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Introduction

This Master’s thesis is the result of five months of work under the supervision of Professor Gabor Wiese.
Calculations were made using the programming language Sagemath [14].

A consequence of the Eichler-Shimura theorem is the following Corollary.

Corollary

Let f =
∑∞

n=1 an(f)q
n ∈ Sk(Γ1(N);C) be a normalized Hecke eigenform.

Then Qf := Q(an(f)|n ∈ N) is a number field of degree less than or equal to dimC(Sk(Γ1(N,C))).

Rings of integers of number fields are Dedekind domains; thus, all their ideals factor uniquely into
prime ideals. One of the main characteristics that can be studied is the residue degree of prime ideals.
Which will give us information of the factorization of ideals.

Studying the residue degree of prime ideals in the coefficient fields of modular forms can for example
give us insights into the inverse Galois problem and the generalized Maedas conjecture.

Now let f ∈ Sk(N ;C) be a cusp form of level N and weight k. There are C linear maps for n ∈ N, Tn :

Sk(N)→ Sk(N), which commute. These maps are called Hecke operators. If we work with the newspace,
a subset of the space of cuspforms. Then Tn is diagonalizable, and as the Hecke operators commute, the
Tn are also simultaneously diagonalizable.

We can find common eigenvectors in Sk(N ;C) called Hecke eigenforms, that allow us to connect
modular forms to algebraic objects called modular symbols, making calculations much easier using various
results from algebra.

For reasonable N and k and f ∈ Snew
k (N ;C) a normalized Hecke eigenform, one can compute Qf as

a number field. We want to study how Qf behaves as we vary N and k.
If we fix N = 1 and vary k, we can use Maeda’s conjecture and some elementary methods to understand

Qf and quicky calculate the residue degree of prime ideals p above a prime p ∈ N.
However, for more general N , we need stronger methods. We introduce algorithms to calculate the

residue degree of the local components of the Hecke algebra of modular symbols. Then we connect the
residue degrees of the local components of the Hecke algebra to the residue degrees of prime ideals p in
Qf .

We calculated the maximal residue degree of the Hecke algebras that correspond to normalized eigen-
forms f ∈ Sk(N ;C) for prime levels N in order to get insights to the question.
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Question: Is the maximal residue degree ap, of primes above p in Qf related to bn, the average
maximum length of a cycle in a permutation of Sn?

In particular, we ask if
lim

N→∞
ap(N)/dim(Sk(N ;C)) ∼ λ/2

where λ is the Golomb-Dickman constant. Our calculations dont aggree with the heuristic. Interestingly
it seems to suggest that on avereage ap(N)/dim(Sk(N ;C)) depends only on the weight k and not on p.
Furthermore, we seem to notice numerical evedence that

lim
n→∞

n∑
N=1

ap(N)/dim(Sk(N ;C))
n

≈ 13/k.

We also found some evedence of regularity in the asymptotic behavior of ap(N)/N that seems to be
in the spirit of the generalized Maedas Conjecture.



Chapter 1

Background

We will briefly review the theory of modular forms, Hecke operators, the q-expansion principle and
newforms. This section will mostly follow Wiese’s text [6] on the computational arithmetic of modular
forms and Miyake [13] for the part about newforms.

1.1 Brief Introduction to Modular Forms

Congruence Subgroups

Recall that a congruence subgroup is a subgroup of SL2(Z) that contains

Γ(N) :=
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 0
0 1

)
(mod N)

}
(1.1)

for some N ∈ N. Although one can consider modular forms even for non-congruence subgroups, see for
example [17], we will only consider the standard congruence subgroups of SL2(Z) mainly for a given
integer N ,

Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

( ∗ ∗
0 ∗

)
(mod N)

}
, (1.2)

Γ1(N) :=
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 ∗
0 1

)
(mod N)

}
. (1.3)

In particular, we will consider modular forms for Γ0(N) or Γ1(N) depending on whether we are working
with a character or not.

Modular Forms

We will here recall the definitions of modular forms with a character. For a more standard introduction,
see [15, Serre] or [3, Diamond]. First, we will fix some notations. We will denote by

H := {z ∈ C|Im(z) > 0}

9
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the Poincaré upper half plane. The set of cusps is defined by P1(Q) = Q∪{∞}. The group PSL2(Z) acts
on H by Möbius transforms. That is, for an M =

(
a b
c d

)
∈ SL2(Z) and z ∈ H ∪ P1(Q) one sets

M.z =
az + b

cz + d
. (1.4)

And we extend this to include ∞ by defining M.(−d/c) =∞ and M.(∞) = a/c.

For M =
(
a b
c d

)
, an integer matrix with non-zero determinant, an integer k and a function f : H→ C,

we put

(f |kM)(z) = (f |M)(z) := f(M.z)
det(M)k−1

(cz + d)k
.

Definition 1.1.1

For fixed integers k ≥ 1 and N ≥ 1. A function f : H→ C given by a convergent power series

f(z) =
∞∑
n=0

an(f)(e
2πiz)

n
=

∞∑
n=0

an(f)q
n with q(z) = e2πiz

is called a modular form of weight k for Γ1(N) if the following statements hold:

(i) (f |kM)(z) = f(M.z)(cz + d)−k = f(z) for all M =
(
a b
c d

)
∈ Γ1(N).

(ii) The function (f |kM)(z) = f(M.z)(cz + d)−k admits a limit when z tends to i∞ for all M =(
a b
c d

)
∈ SL2(Z).

We denote the set of all modular forms of weight k for Γ1(N) by Mk(Γ1(N);C). We call f a cusp
form if we replace (ii) by

(ii)’ The function (f |kM)(z) = f(M.z)(cz + d)−k is a homomorphic function and the limit
f(M.z)(cz + d)−k is 0 when z tends to i∞.

We denote the set of all cusp forms of weight k for Γ1(N) as Sk(Γ1(N);C).
Let us now suppose we are given a Dirichlet character χ of modulus N as above. We call f a modular
form of weight k for Γ0(N) and χ (respectively, cusp forms if they satisfy (ii)’) if we replace (i) by:

(i)’ f(M.z)(cz + d)−k = χ(d)f(z) for all M =
(
a b
c d

)
∈ Γ0(N).

In this case we will use the notation Mk(N,χ;C) and Sk(N,χ;C). When χ is the trivial character
we write Mk(N ;C) := Mk(N,χ;C) and Sk(N ;C) := Sk(N,χ;C).

All these spaces are finite dimension C-vector spaces, and if we consider all modular forms (or all cusp
forms) of any weight, they form a structure of a C graded ring (or a graded ideal, respectively). The
dimensions of the spaces are well known for k ≥ 2 (see [3]); however, for the case k = 1, very little is
known about the dimension when we vary the level. The above definition of modular forms might make
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the reader think that modular forms are relatively obscure, complex analytical objects. This is not the
case; modular forms are highly geometric, arithmetic, and topological in nature and are of interest in
various fields of mathematics. We will end this section by introducing the coefficient field of modular
forms, our study’s object of most interest.

Definition 1.1.2

The coefficient field of a modular form f is the subfield of C generated by all the coefficients an of
its q-expansion. That is Qf := Q(an(f)|n ∈ N).

We will see later by the Eichler-Shimura isomorphism—that coefficient fields of normalized eigenforms
are number fields. The space of cusp forms Sk(N,χ;C) has a basis of modular forms that are simultaneous
eigenforms for all Hecke operators and with algebraic Fourier coefficients. The coefficient field will be a
number field for such eigenforms. Moreover, if m is the smallest positive integer such that the values of
the character χ are contained in the cyclotomic field Q(ζm), the coefficient field will contain Q(ζm).

1.2 Hecke Operators

The Hecke operators are a large area within the theory of modular forms. One of the reasons it was
first developed was to find a canonical basis for the vector space of cusp forms Sk(Γ1(N);C). Since cusp
forms are more challenging to write explicitly than the Eisenstein series, specifying a basis requires more
sophisticated methods than the direct calculations needed to find a basis for the Eisenstein Series.

Additionally, the Peterson inner product makes Sk(Γ1(N);C) an inner product space, and the Hecke
operators ⟨n⟩ and Tn for n relatively prime to the level N are normal with respect to this inner product.
Thus, by linear algebra, the space Sk(Γ1(N);C) has an orthonormal basis whose elements are simulta-
neously eigenfunctions for the Hecke operators relatively prime to N . Furthermore, we can decompose
Sk(Γ1(N);C) into old and new subspaces. The new subspace has an orthonormal basis of eigenfunctions
for all the Hecke operators, and if we normalize the basis, it becomes “canonical”. Furthermore, the old
subspace is composed of the image of new subspaces of lower levels.

Explicit Definitions and Formulas

Computing modular forms using the definition 1.1 is not always straightforward, so we use the Hecke
operators to make some progress in working with them more explicitly. They and the diamond operator are
at the base of everything we will do with modular forms. One can define the operators more conceptually
using geometry. See for example [3]. For our purposes, we will define them with formulas.

If a is an integer coprime to N , then we may let σa be a matrix in Γ0(N) such that

σa ≡
(
a−1 0
0 a

)
mod N. (1.5)
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We define the diamond operator ⟨a⟩ by the formula

⟨a⟩ f = f |kσa.

If f ∈ Mk(N,χ,C) then by definition ⟨a⟩ f = χ(a)f . This means that the diamond operators give a
group action of (Z/NZ)× on Mk(Γ1(N);C) and on Sk(Γ1(N),C), and Mk(N,χ;C) and Sk(N,χ,C) are
the χ-eigenspaces for this action. Thus, we have the isomorphism

Mk(Γ1(N),C) ≃
⊕
χ

Mk(N,χ,C) (1.6)

for χ running through the characters of (Z/NZ)× and similarly for the cuspidal spaces. Let l be prime.
We let

Rl :={
(
1 r
0 l

)
|0 ≤ r ≤ l − 1} ∪ {σl

(
l 0
0 1

)
}, if l ∤ N (1.7)

Rl :={
(
1 r
0 l

)
|0 ≤ r ≤ l − 1}. if l|N (1.8)

We use these sets to define the Hecke Operator Tl,k acting on f as follows.

Definition 1.2.1

Let l be a prime. The l-th Hecke operator Tl,k of weight k is the operator on the set of functions on
H defined by

Tl,k(f) =
∑
γ∈Rl

f |kγ.

We often drop k from the notation and write Tn when the weight is clear from context.

Lemma 1.2.1

Let f ∈ MK(N,χ;C) and g ∈ Mk(Γ1(N),C). We can extend χ so that χ(l) = 0 if l divides N. We
have the formulas

an(Tlf) = anl(f) + lk−1χ(l)an/l(f),

an(Tlg) = anl(g) + lk−1an/l(g).

Where an/l(f) is equal to 0 when l does not divide n.

If we are working with the spaces Mk(Γ1(N);C) or Sk(Γ1(N);C) we can furthermore define the Hecke
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operators for composite n recursively by the following formulas

Tmn = TmTn if (m,n) = 1 (1.9)

Tln = Tln−1Tl − lk−1 ⟨l⟩Tln−2 is l is prime. (1.10)

And we can easily deduce the very important formula

a1(Tnf) = an(f).

The lemma and the formula above show that the Hecke operators commute among one another. Along
with the fact that the Hecke operators preserve the spaces Mk and Sk (with character or not). It thus
makes sense to consider modular forms, which are eigenvectors for every Hecke operator.

Definition 1.2.2

A Modular form that is an eigenvector for Tn where n ∈ N is called an eigenform. Additionally, an
eigenform is said to be normalized if the q-coefficient in its Fourier series is one, i.e.

f = a0 + q +

∞∑
i=2

aiq
i.

Now we can relate the diamond operators with the Hecke operators as a Z linear combination of the
Hecke operators as follows

lk−1 ⟨d⟩ = T 2
l − Tl2 .

For all l ≡ d mod N . Now by Bézout’s identity we can find l1 ̸= l2 such that 1 = lk−1
1 r + lk−1

2 s for
appropriate r, s ∈ Z. Thus, we can write

⟨d⟩ = rT 2
l1 − rTl21

+ sT 2
l2 + sTl22

.

1.3 Hecke Algebras and the q-Pairing

The Hecke algebra is an algebraic structure that encodes the arithmetic properties of modular forms. We
will show that the Hecke algebra is the linear dual of the space of modular forms, and we can derive all
knowledge about modular forms from it.



14 CHAPTER 1. BACKGROUND

Definition 1.3.1

We define the Hecke algebra over a ring R of Mk(Γ1(N);C), Sk(Γ1(N);C),Mk(N,χ;C) and
Sk(N,χ;C) to be the R-subalgebra inside the endomorphism ring of the respective C-vector spaces
generated by all the Hecke operators and all diamond operators, denoted

TR(Mk(Γ1(N);C)),TR(Sk(Γ1(N);C)),TR(Mk(N,χ;C)),TR(Sk(N,χ;C))

respectively.

Not only that, but we now define a bilinear pairing, which we call the (complex) q-pairing, as

Mk(N,χ;C)× TC(Mk(N,χ;C))→ C, (f, T )→ a1(Tf).

Lemma 1.3.1

Let k ≥ 1. The complex q-pairing is perfect, as is the analogous pairing for Sk(N,χ;C). In particular,

Mk(N,χ;C) ≃ HomC(TC(Mk(N,χ,C),C)), f → (T → a1(Tf)).

And similarly for Sk(N,χ;C). For Sk(N,χ;C), the inverse is given by sending ϕ to
∑∞

n=1 ϕ(Tn)q
n.

Proof

Note that a pairing over a field is perfect if and only if it is nondegenerate. We already have the
equation

a1(Tnf) = an(f).

If 0 = a1(Tnf) = an(f), then f = 0. This is clear for cuspforms; for non-cuspforms, we can conclude
that f is a constant. And since k ≥ 1, the only constant modular form is the zero function. On the
other hand if a1(Tnf) = 0 for all f , then a1(T (Tnf)) = a1(TnTf) = an(Tf) = 0 for all f . As the
Hecke algebra is the subring in the endomorphism ring of Mk(N,χ;C) or Sk(N,χ;C), then T must
be equal to zero, proving the non-degeneracy.

■

The perfectness of the q-pairing is also called the existence of a q-expansion principle. The importance
of this principle is that modular forms are defined by their q-expansion.

We end this section by introducing a vital lemma
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Lemma 1.3.2

Let f ∈Mk(Γ1(N);C) or Mk(Γ0(N);C) be a normalized eigenform for k ≥ 1. Then

Tnf = an(f)f, for all n ∈ N.

Moreover, the natural map from the above duality gives bijections

{Normalized eigenforms in Mk(Γ1(N);C)} ↔ HomC−algebra(TC(Mk(Γ1(N),C)),C)

{Normalized eigenforms in Mk(N,χ;C)} ↔ HomC−algebra(TC(Mk(N,χ,C)),C).

Proof

Let f be a normalized eigenform, then by definition there exists an(f) such that Tnf = an(f)f for
all n ∈ N. We can easily construct a map from the normalized eigenforms, a homomorphism of the
Hecke algebras with the map f → (Tn → an(f)). On the other hand, we want to construct an inverse
map that takes ρ → f = a0 + q +

∑
n≥2 ϕ(Tn)q

n to a normalized Hecke eigenform. First note that
by 1.3.1 we can idendify the C-linear homomorphisms ρ to a modular form g ∈Mk with the pairing
g ↔ (T → a1(Tf)) = ρ. Also, ρ is a C-algebra homomorphism so a1(g) = a1(T1f) = ρ(T1) = 1 and
in general for n ≥ 2

an(Tmg) = a1(TnTmf) = ρ(TnTm)

= ρ(Tn)ρ(Tm) = a1(Tng)a1(Tmg)

= an(f)am(f) = an(am(f)f).

This caluation gives us the relation an(Tmf−am(f)f) = 0 for all m,n ≥ 2. That is Tmf−am(f)f ∈
Mk is a constant, but as the only constant modular form of positive weight is the zero function we
have the equality

Tmf = am(f)f.

This shows that f is a normalized Hecke eigenform.

■

Thus, normalized Hecke eigenforms can be seen as ring homomorphisms, and we will be viewing them
from this perspective in this text.

1.4 Newforms

The newforms are important objects of study and they play a fundamental role in the theory of modular
forms and automorphic forms. They are special types of modular forms that are particularly interesting
because they have certain desirable properties. They act like the "prime" modular forms because they
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cannot be constructed from a modular form of lower level. In addition to their intrinsic mathematical
interest, new forms also have important applications in other areas of mathematics, including the Lang-
lands program, a vast web of conjectures and connections between number theory, algebraic geometry,
and representation theory.

We are mostly interested in the way they can be used to decompose Sk(Γ1, χ;C) into these "prime"
spaces that have a "canonical" basis. The space of modular forms Mk(Γ1(N);C) can be viewed as the
direct sum

Mk(Γ1(N);C) = Mk(Γ1(N);C)eis ⊕ Sk(Γ1(N);C)

with Mk(Γ1(N);C)eis being the space of Eisenstein modular forms. Furthermore, the space of cusp forms
can also be viewed as the direct sum

Sk(Γ1(N);C) :=
⊕
χ

Sk(N,χ;C).

Now much is known about the space Mk(Γ1(N);C)eis, and its structure is simpler than that of Sk(Γ1(N);C).
We should, therefore, want to study the spaces Sk(Γ0(N), χ;C) closely. Lastly we can decompose the
space Sk(Γ0(N), χ;C) even further by

Sk(N,χ;C) = Sk(N,χ;C)old ⊕ Sk(N,χ;C)new.

Moreover, the space Sk(N,χ;C)old is formed by "new forms" of lower levels. The Peterson product defined
below makes the spaces Sk(Γ0(N), χ;C)old, Sk(Γ0(N), χ;C)new orthogonal. If we extend the definition,
we can show in some sense that the space of cuspforms is even orthogonal to the space of the Eisenstein
series.

Definition 1.4.1

Let Sk be the space of cusp forms (for either Γ0 with a character χ or Γ1). The mapping

⟨·, ·⟩ : Sk × Sk → C, ⟨f, g⟩ :=
∫
F
f(τ)g(τ)(im τ)kdν(τ)

is called the Petersson inner product, where

F := {τ ∈ H : |ℜτ | ≤ 1/2, |τ | ≥ 1}

is the fundamental region of the modular group and for τ = x + iy we let dν(τ) = y−2dxdy be the
hyperbolic volume form.
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Atkin-Lehner-Li Theory

A construction shown by Atkin-Lehner gives a basis for the space of modular forms of a given level,
which are eigenfunctions for the Hecke operators prime to that level. Taking forms from lower levels M |N
then we can see that Sk(Γ1(M);C) ⊆ Sk(Γ1(N);C). Another way to move between levels is to embed
Sk(Γ1(M);C) into Sk(Γ1(N);C) by composing with a "multiply-by-d" map where d is any factor of N/M .
Because for any such d, let

αd =
(
d 0
0 1

)
.

Then we have the relation (f |k(αd))(τ) = dk−1f(dτ) for f : H → C. Now αd is an injective linear map
that takes Sk(Γ1(M);C) to Sk(Γ1(N);C), increasing the level from M to N .

Definition 1.4.2

For each divisor d of N , let id be the map

id : (Sk(Γ1(N/d);C))2 → Sk(Γ1(N);C), (f, g)→ f + g[αd]k.

The subspace of oldforms at level N is defined as:

Sk(Γ1(N);C)old =
∑
p|N

p is prime

ip((Sk(Γ1(N/p);C))2).

And then we define the subspace of newforms at level N as the orthogonal complement with respect
to the Petersson inner product, that is

Sk(Γ1(N);C)new = (Sk(Γ1(N);C)old)⊥.

Miyake extended this idea to a more general case, including the modular forms in the sense of Langlands
in the context of representation theory. To pass to this more general case of a cusp form with a character,
we can define:

Sk(N,χ;C)old :=
⋃
M

⋃
l

{f(lz)|f ∈ Sk(M,χ;C)} .

And the space of newforms as the orthogonal complement of oldforms with respect to the Petersson inner
product. Here M runs through all positive integers such that mχ|M,M |N , and M ̸= N ; l runs through all
positive divisors of N/M including 1 and N/M ; mχ is the conductor of χ. In other words, Sk(N,χ;C)old

is the subspace of Sk(N,χ;C) generated by cusp forms of lower levels.

By definition, the following lemma is obvious:
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Lemma 1.4.1

1 If χ is a primitive Dirichlet character of conductor N , then Sk(N,χ;C) = Sk(N,χ;C)new.

2 If mχ|M,M |N and M ̸= N , then Sk(M,χ;C) ⊆ Sk(N,χ;C)old.

3 Sk(N,χ;C) is generated by the set⋃
M

⋃
l

{f(lz)|f ∈ Sk(M,χ;C)new} .

Here M runs through all positive integers such that mχ|M,M |N , and M ̸= N ; l runs through
all positive divisors of N/M including 1 and N/M .

We can actually prove that Sk(N,χ;C)new has a basis consisting of primitive forms [13] by using the
following lemma

Lemma 1.4.2

The sets Sk(N,χ)old and Sk(N,χ)new are stable under Hecke operators T (n) where (n,N) = 1.

We should emphasise that the newforms are the building blocks of the cuspidal space. If some new
information comes by increasing the level, then it must come from the newspace. If we are looking at some
statistics about the cuspidal space, we should only focus on the newspace since if we do not; we count
the statistics for different levels many times. A simple way to do this that does not require complicated
computations is by looking at the space Sk(Γ1(N);C) or the space Sk(N,χ;C) for prime N . The reason
we do this is that their oldspace is composed only of the image of Sk(Γ1(1);C) and Sk(1, χ;C), which are
well-known spaces that we can account for and thus easily calculate the newspace.



Chapter 2

Modular Symbols

We will first define the modular symbols formalism and define Hecke operators on them and show how
the Eichler-Shimura theorem lets us establish a link between modular forms and modular symbols. Fur-
thermore, we will define the Hecke Algebras.

This text is largely based on [6, Wiese’s] text on the computational Arithmetic of Modular Forms,
where all the proofs of the stated theroms can be found, with some inspiration from [16, Stein].

2.1 Modular Symbols Formalism

This section defines formal modular symbols, as implemented in [6]. But first, some motivation. Note the
decomposition

Mk(Γ;C) = Sk(Γ;C)⊕ Ek(Γ;C)

where Ek(Γ;C) is spanned by generalized Eisenstein series and Sk(Γ;C) is the space of cusp forms. As we
mentioned in the section about newforms, the structure of Sk is generally much more complicated than
that of the Eisenstein series Ek.

An idea of Birch, called modular symbols, provides a method for computing Sk(Γ), for a congruence
subgroup Γ, and its various properties. For example, for understanding special values of L-functions and
in our case making the calculations of modular forms much more explicit. Modular symbols are also an
essential theoretical tool.

We can think of modular symbols {α, β} as the homology class relative to the cusps of a path or
simply as a geodesic path between two cusps α and β in P1(Q).

We will, however, give a combinatorial definition. For the rest of this section, we let R be a commu-
tative ring with a unit and Γ be a subgroup of finite index in PSL2(Z) := SL2(Z)/ ⟨−1⟩. We choose
to work with PSL2(Z) instead of SL2(Z) since it simplifies algebra and notation. We let V be a left
R[Γ]-module.

19
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Definition 2.1.1

We define the R-modules

MR := R[{α, β}|α, β ∈ P1(Q)]/
〈
{α, α}, {α, β}+ {β, γ}+ {γ, α}|α, β, γ ∈ P1(Q)

〉
and

BR := R[P1(Q)]

and equip both with the natural Γ-action. Furthermore, we let

MR(V ) := MR ⊗R V and BR(V ) := BR ⊗R V

for the left diagonal Γ-action.

(a) We call the Γ-coinvariants

MR(Γ, V ) := MR(V )Γ = MR(V )/ ⟨(x− gx)|g ∈ Γ, x ∈MR(V )⟩

the space of (Γ, V )-modular symbols.

(b) We call the Γ-coinvariants

BR(Γ, V ) := BR(V )Γ = BR(V )/ ⟨(x− gx)|g ∈ Γ, x ∈ BR(V )⟩

the space of (Γ, V )-boundary symbols.

(c) We define the boundary map as the map

MR(Γ, V )→ BR(Γ, V )

which is induced from the map MR → BR sending {α, β} to {β} − {α}.

(d) The kernel of the boundary map is denoted by C MR(Γ, V ) and is called the space of cuspidal
(Γ, V )-modular symbols.

Let R[X,Y ]n be the homogeneous polynomials of degree n in two variables with coefficients in the
ring R. We put Vn(R) = R[X,Y ]n and

Mat2(Z)det ̸=0 := GL2(Q) ∩ Z2×2.

Then Vn(R) is a Mat2(Z)det ̸=0-module in several ways, for example:
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(
(
a b
c d

)
.f)(X,Y ) = f((X,Y )

(
a b
c d

)
) = f((aX + cY, bX + dY ))

(
(
a b
c d

)
.f)(X,Y ) = f(

(
d −b
−c a

)(
X
Y

)
) = f(

(
dX−bY
−cX+aY

)
).

Both these actions are isomorphic since the transpose of (X,Y )
(
a b
c d

)
is isomorphic to (X,Y )σ−1

(
a b
c d

)
σ,

where σ =
(

0 1
−1 0

)
. That is, we have an isomorphism

Vn(R) −−−→
σ−1.f

Vn(R)

carrying the action of the left-hand module to the action of the right-hand module. We also have the
natural action by Mat2(Z)det ̸=0 given by:

(
(
a b
c d

)
.f)

(
X
Y

)
= f(

(
a b
c d

)(
X
Y

)
) = f(

(
aX+bY
cX+dY

)
).

We will use the first mentioned action since Sagemath [14] implements it.
Now let χ : (Z/NZ)× → R× be a Dirichlet character. By Rχ we denote the R[Γ0(N)]-module which

is defined to be R with the Γ0(N)-action through χ, that is
(
a b
c d

)
.r = χ(a)r = χ−1(d)r for

(
a b
c d

)
∈ Γ0(N)

and r ∈ R. We let
V χ
n (R) := Vn(R)⊗R Rχ

equipped with the natural diagonal left Γ0(N)-actions. Note that if χ(−1) = (−1)n, then minus the
identity it acts trivially on V χ

n (R), thus we consider these modules also as Γ0(N)/{±1} modules.

Definition 2.1.2

Let N ≥ 3, k ≥ 2 be integers. We define the modular symbols and the cuspidal modular symbols for
the congruence subgroups Γ1(N) and Γ0(N) as

Mk(Γ1(N);R) := MR(Γ1(N), Vk−2(R)),

C M k(Γ1(N);R) := C MR(Γ1(N), Vk−2(R)),

Mk(N,χ;R) := MR(Γ0(N)/{±1}, Vk−2(R)),

C M k(N,χ;R) := C MR(Γ0(N)/{±1}, Vk−2(R)).

Let η :=
(−1 0

0 1

)
. Now η

(
a b
c d

)
η =

(
a −b
−c d

)
and

ηΓ1(N)η = Γ1(N) ηΓ0(N)η = Γ0(N).

We can use the matrix η to make an involution on the various modular symbols spaces. We use the
diagonal action on MR(V ) provided η acts on V . On Vk−2(R) we use the usual Mat2(Z)det ̸=0-action,
and on V χ

k−1 = V χ
k−2 ⊗Rχ we let η only act on the first factor. We denote by superscript + the subspace
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invariant under this involution, and by the superscript −, we denote the anti-invariant one.

2.2 Hecke Operators on Modular Symbols

This section aims to extend the definition of Hecke operators and diamond operators on formal modular
symbols, Mk(Γ1(N);R),C M k(Γ1(N);R),Mk(N,χ;R) and C M k(N,χ;R), for any ring R. We can see
that they are conceptually very similar if we view them from a double coset formulation, as seen in [19]
and [13].

We will now define the Hecke operators for modular symbols by only considering Tl for l prime,
similarly to that of the Hecke operators for modular forms. Then we can use formulas 1.9 and 1.10 to
define the Tn for composite n. Next, we define the diamond operators for any n ∈ N.

Note the definition 1.7 and 1.8 of Rl, let x ∈Mk(Γ1(N);R) or x ∈Mk(N,χ;R) and we define

Tlx :=
∑
δ∈Rl

δ.x.

If a is an integer coprime to N , we define the diamond operator as

⟨a⟩x := σax

with σa defined as before in 1.5. Note that when x = (m ⊗ v ⊗ 1)Γ0(N)/{±1} ∈ Mk(N,χ;R), then
⟨a⟩x = (σam⊗σav⊗χ(a−1))Γ0(N)/{±1} = x, thus (σam⊗σav⊗1)Γ0(N)/{±1} = χ(a)(m⊗v⊗1)Γ0(N)/{±1}.

Hecke algebras

Just as in the section on modular forms, we define Hecke algebras on modular symbols similarly. We let
TR(MR(Γ1(N));R)) be the R-subalgebra of the R-endomorphism algebra of the R-module Mk(Γ1(N);R)

generated by the Hecke operators Tn. We define the Hecke algebra for cuspidal modular symbols similarly.
Now, we state a very useful result without proof and a corollary that allows us to explicitly work with
the Hecke algebras.

Proposition 2.2.1

The R-modules Mk(Γ1(N), R),C M k(Γ1(N), R),Mk(N,χ;R) and C M k(N,χ;R) are finitely pre-
sented.

Corollary 2.2.1

Let R be a Noetherian ring. The Hecke algebras TR(Mk(Γ1(N), R)),TR(C M k(Γ1(N), R)),
TR(Mk(N,χ;R)) and TR(C M k(N,χ;R)) are finitely presented R-modules.



2.2. HECKE OPERATORS ON MODULAR SYMBOLS 23

This means that we can find q, p ∈ N and surjective maps Rq → TR(Mk(Γ1(N), R)) and Rp →
M (Γ1(N), R). Then we can look at the space TR(Mk(Γ1(N);R)) and Mk(Γ1(N);R) as elements in Rp

and Rq respectively that have some relation between each other. If R is a ring, we can store all data
about the modular symbols as a finite tuple, or better yet, if R is a field, then we can use linear algebra
to calculate the modular symbols as a subspace of a finite-dimensional vector space. The same can be
said of the cuspidal modular symbols and algebra.

Eichler–Shimura Isomorphism

Here, we state a theorem which is a fundamental result in the study of modular forms.

Theorem 2.2.1

(Eichler-Shimura) There are isomorphisms respecting the Hecke operators

(a) Mk(N,χ;C)⊕ Sk(N,χ,C)∨ ≃Mk(N,χ,C),

(b) Sk(N,χ,C)⊕ Sk(N,χ,C)∨ ≃ C M k(N,χ,C),

(c) Sk(N,χ,C) ≃ C M k(N,χ,C)+.

Similar isomorphism holds for modular forms and modular symbols on Γ1(N).

The theorem allows us to connect modular forms, a complex analytic function, with an algebraic
object that is simpler to work with and can be easily represented in a computer. The isomorphism 2.2
above gives rise to the following three corollaries.

Corollary 2.2.2

Let R be a subring of C and. Then there is the natural isomorphism

TR(Mk(Γ1(N);C)) ≃ TR(Mk(Γ1(N);C)).

A similar result holds for cusp forms.

Corollary 2.2.3

Let R be a subring of C and χ : (Z/NZ)× → R× a character. Then, the natural map

TR(Mk(N,χ,C))⊗R C ≃ TC(Mk(N,χ;C))

is an isomorphism. A similar result holds for cusp forms and Γ1(N).
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Corollary 2.2.4

Let R be a subring of C. Then we have the isomorphisms

Mk(Γ1(N),C) ≃ HomR(TR(Mk(Γ1(N);R)), R)⊗R C

≃ HomR(Mk(Γ1(N);R),C)

Sk(Γ1(N),C) ≃ HomR(TR(C M k(Γ1(N);R)), R)⊗R C

≃ HomR(C M k(Γ1(N);R),C).

The above corollary lets us describe modular forms in linear algebra involving only modular symbols.
Now, lastly and most importantly for our study is the following corollary.

Corollary 2.2.5

Let f =
∑∞

n=1 an(f)q
n ∈ Sk(Γ1(N);C) be a normalized Hecke eigenform. Then Qf := Q(an(f)|n ∈

N) is a number field of degree less than or equal to dimC Sk(Γ1(N);C). If f has Dirichlet character
χ, then Qf is a finite field extension of Q(χ) of degree less than or equal to dimC Sk(N,χ;C). Here
Q(χ) is the extension of Q generated by all the values of χ.

Proof

If we apply the previous corollaries with R = Q or R = Q(χ) and note that Hecke eigenforms
f correspond to algebra homomorphisms λf from the Hecke algebra into C. Let’s first note that
by 2.2.3

TQ ⊗Q C = TC.

That is, there exists a Q-structure in TC. In terms of matrices, this means that TC has a C-basis
consisting of matrices with coefficients in Q. Additionally, we know that the Hecke algebra TC has
a finite basis

〈
T (1), . . . , T (d)

〉
. We also have the following equalities

Sk = HomC(TC,C)

= HomC(C⊗Q TQ,C)

= HomQ(TQ,C).

Any C-linear map f : TC → C is uniquely determined by its values on a basis, and the same is true
to determine Q-linear maps g : TQ → C. Now TQ is a finite-dimensional Q-vector space and

HomC−alg(TC,C) = HomQ−alg(TQ,C).

Since the C-algebra homomorphism and Q-algebra homomorphism are determined by the identity
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matrix going to one and the values on the basis elements.
This means that any normalized Hecke eigenform f can be seen as a Q-algebra homomorphism ρ,
and its image is the coefficient ring.

Now, the image of ρ is equal to the coefficient field of f and is a number field that is

Im(λ) = Q(ρ(Tn)|n ∈ N) = Q(an(f)|n ∈ N) = Qf .

■

Lastly, we mention a proposition and a corollary that tell us that when we are calculating the Hecke
algebras for Γ0(N), we have an upper bound on the number of Hecke operators we need to make in order
to calculate the Hecke algebra.

Proposition 2.2.2

Let f ∈Mk(N,χ;C) such that an(f) = 0 for all n ≤ kµ/12, where µ = N
∏

l|N prime(1 + 1/l). Then
f = 0.

Corollary 2.2.6

Let K,N, µ and χ be as in the previous proposision. Then Tk(C M (N,χ;K)) can be generated as
a K-vector space by the operators Tn for 1 ≤ n ≤ kµ/12.

2.3 Modular Forms Over General Rings

When studying the arithmetic properties of modular forms, it is often useful to work over rings. For
example, when studying mod p Galois representations attached to modular forms, it is often easier to
work with modular forms whose coefficients already lie in a finite field. If we define the modular forms
over a ring R as the R-linear dual of the Z-Hecke algebra of the holomorphic modular forms, that is, by
taking q-expansions with coefficients in R, we can already get quite far.

If we are working with the congruence subgroup Γ1(N), then the modular forms with q-expansion in
the integers form a lattice in the space of all modular forms.

We will here define modular forms over general rings as follows
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Definition 2.3.1

Let k ≥ 1 and N ≥ 1. Let R be any ring. We use the q-pairing to define modular (cusp) forms over
R. We let

Mk(Γ1(N);R) := HomZ(TZ(Mk(Γ1(N);C)), R)

≃ HomR(TZ(Mk(Γ1(N);C))⊗Z R,R)

Sk(Γ1(N);R) := HomZ(TZ(Sk(Γ1(N);C)), R)

≃ HomR(TZ(Sk(Γ1(N);C))⊗Z R,R).

Likewise, we give a similar definition for Mk(N,χ;R) and Sk(N,χ;R)

Every element f of Mk(Γ1(N);R) or Mk(N,χ;C) corresponds to a Z-linear function Φ : TZ(Mk(Γ1(N);C))→
R and is uniquely indentified by its formal q-expansion

f =
∑
n∈N

Φ(Tn)q
n =

∑
n

an(f)q
n ∈ R[[q]].

Note that if we want to get the original q-expansion, a 0-th coefficient should also be there. However,
for cusp forms, we do not have to worry about this. The definitions agree with that of 1.1 and as a special
case R = Z then Mk(Γ1(N);Z) corresponds exactly to holomorphic modular forms Mk(Γ1(N);C) whose
q-expansion take values in Z.



Chapter 3

Methods

This chapter discusses the methods used to calculate statistics about the maximal residue degree of prime
ideals in the coefficient fields of Hecke eigenforms in Sk(N,C)new. There are a couple of reasons we chose
to work with this space. Firstly, we have by corollary 2.2.5 that the coefficient field of Hecke eigenforms
in the space Sk(N,C) is a number field. Secondly, as discussed in the section about newforms, we would
only like to count the new information on the space. Moreover, we choose to work with cusp forms for
Γ0(N) since the space is much smaller than that of Γ1(N) as well as the fact that we can bound the
number of calculations needed to make in order to generate the Hecke algebra, see 2.2.6.

We will first discuss an elementary method due to Kummer that we can use to calculate the residue
degrees when working with the spaces Sk(1,C), using Maeda’s conjecture. Then discuss a more sophisti-
cated method that calculates the residue degree of the local components of Hecke algebras over Fp. Lastly
we will show the connection between the residue degree of the Hecke algebra defined over Fp with the
residue degree of the coefficient ring of Hecke eigenforms reduced modulo a prime above p.

This chapter is based on discussions between the author and Professor Wiese.

3.1 Maeda and Kummer

We begin by introducing Maeda’s Conjecture, first proposed by the Japanese mathematician Yutaka
Maeda [5], which is related to the structure of the Hecke algebra associated with modular forms. It states
that the Hecke algebra of weight k modular forms on the full modular group is a simple algebra.

Conjecture 3.1.1

(Maeda) For any k and any normalized eigenform f ∈ Sk(1), the coefficient field Qf has degree equal
to dk := dimC Sk(1;C) and the Galois group of its normal closure over Q is the symmetric group
Sdk .

In simpler terms, Maeda’s Conjecture suggests a remarkable and elegant algebraic structure for the
Hecke algebra associated with modular forms of a certain weight. If true, this conjecture would provide

27
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deep insights into the arithmetic and algebraic properties of modular forms and their underlying structures.
A consequence of the conjecture is that the characteristic polynomial of T2 on Sk is irreducible for any
k. In the last thirty years, this statement has been verified numerically for k ≤ 12.000, see 3.1, which we
will use to calculate the number field. There are also some generalizations of Maeda’s conjecture, see [11],

Source weights
Lee-Hung k ≤ 62, k ̸= 60
Buzzard k = 12l, l prime, 2 ≤ l ≤ 19
Maeda k ≤ 468
Conrey-Farmer k ≤ 500, k ≡ 0 (mod 4)
Farmer-James k ≤ 2.000
Buzzard-Stein, Klansman k ≤ 3.000
Chu-Wee Lim k ≤ 6.000
Ghitza-McAndrew k ≤ 12.000

Table 3.1: Summary of known cases of Maeda’s conjecture for T2

that tell us about the structure of the Hecke algebra of modular forms of different levels. Another result
related to Maeda’s conjecture is the following proposision 3.1.1.

Proposition 3.1.1

If N is a prime, k = 2 and f ∈ Sk(N,C)new be a Hecke eigenform then there exists a prime p such
that Qf = Q(ap) [9].

Let Qf = Q(α), then if we know α we can easily construct the coefficient field with the minimal
polynomial of α. This makes the calculations of the residue degrees of the coefficient fields of normalized
eigenforms over a prime p straightforward, and we can use some elementary methods.

Let us now fix a p and study properties of the coefficient fields of a normalized eigenform f ∈ Sk(1;C),
denoted Qf and then reduce it modulo some prime p over the prime p in Qf . The idea is to reduce the
minimal polynomial of α modulo p because this gives us all the information about the set

Ef,p :=
{
[OQf

/p1 : Fp], [OQf
/p2 : Fp], . . .

}
.

We can do this because the eigenform coefficients are algebraic integers so we can reduce them over
the finite field Fp first and then for a prime ideal over p. In particular, we would like to study the set
∪Bk=12Ef,p and make some observations.

Let F be a number field and α ∈ OF be such that F = Q(α). The index of α is defined as ind(α) =
|OF /Z[α]|. This value characterizes when it is possible to factor pOF by computing the factorization of
a polynomial over Fp.
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Theorem 3.1.1

(Kummer) Let f ∈ Z[x] be the minimal polynomial of α over Z and suppose p does not divide
ind(α). Let

f =

k∏
j=1

fj
ej ∈ Fp[x]

be the factorization in monic irreducible polynomials, and define Pj := (p, fj(α)) where fj is any lift
of f j to Z[x]. Then

pOF =
k∏

j=1

P
ej
j .

Note that this method does not always work. We might have to employ the Buchmann-Lenstra
algorithm, which is quite technical and fully described in Cohen’s book [2]. However, since we are
interested in the asymptotic behaviour of the coefficient field, we do not have to worry about this particular
case.

We can now compute [OQf
/p1 : Fp] through the degree of the irreducible factor of the minimal

polynomial of α for a prime p chosen with some caution.

3.2 Local Algebras

In order to make progress in calculating the residue degrees for Sk(N ;C), we need to use more sophisticated
methods. We will show how to decompose the Hecke algebras into its local components. Then, we aim to
connect the residue degree of the Hecke algebra with the residue degree of primes of the coefficient field
of Hecke eigenforms.

The algebra T := TFp(C M k(N ;Fp)) = HomFp(Sk(N ;Fp),Fp) is a finite-dimensional commutative Fp

algebra, and by results from commutative algebra we can also we write it as

T ≃
∏

p prime ideals of T
Tp

where the Tp are the local Hecke algebras associated to the prime ideal p.
We first propose Algorithm 1 to generate the mod p Hecke algebra T := ⟨Tn|Tn ⟲ Sk(N,Fp)⟩. And

then propose Algorithm 2 to decompose the Hecke algebra into its local components Tp

Generating the Hecke algebra

First, we will calculate the dimension of the space of cusp forms, d := dimFp(T) = dimFp(Sk(N,Fp)),
by known formulas, and use this as an indicator when we should stop our algorithm. Then, we can
look at the algebra as a Fp vector space by 2.2 to simplify the calculations. Then, once we have enough
Hecke operators to span our algebra, we can calculate the residue degree of the Hecke algebras after
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Algorithm 1 Generate the Hecke Algebra
Require: N ≥ 1, k ≥ 2,

calculate d = dimFp(T) = dimFp(Sk(N ;C))
M ← 0 ⊂ MatrixAlgebra(Fp, d)
while dim(M) ̸= d do

M ←M + ⟨Tn⟩
end while
Get a Fp basis of M : T (1), . . . , T (d)

localization. While calcuating decomposition of the algebra TFp(C M k(N,χ;Fp)) and TFp(Mk(N,χ;Fp))

we can furthermore use the Sturm bound 2.2 to be sure we will end our calculations.

Decomposition of the Hecke algebra

Algorithm 2 Decomposition of Hecke algebra into it’s local components

Require: A basis {T (1), . . . , T (d)} of the commutative finite dimensional Fp-algebra T
S ← [Fn

p ]

for T ∈ {T (1), . . . , T (d)} do
Snew = []
for Si ∈ S do

Find minimal polynomial P of T on Si

Factor P =
∏

peii into irreducible polynomials
for irreducible factor pi in the factorization of P do

Snew ← Snew + [Ker(peii (T ))]
end for

end for
S ← Snew

end for
return S

We can find the local algebras using a recursive algorithm and then easily calculate the residue degrees
of each of them. If we assume we know a basis B := {T (1), . . . , T (n)} of the commutative finite dimensional
Fp-algebra T, we can use proposition 3.2.1 to achieve our goal.

Proposition 3.2.1

Let K be a field of characteristic 0 or a finite field. Let A be a finite-dimensional commutative
algebra over K and let a1, . . . , an be a K−basis of A with the property that the minimal polynomial
of each ai is a power of a prime polynomial pi ∈ K[X]. Then A is local.

We have already established that TFp(M (Γ1(N),Fp)) is a finitely presented Fp-module 2.2. This
means that there exists a surjection Fn

p → TR(M (Γ1(N),Fp)). We can think of Hecke operators as
homomorphisms of Fn

p , or simply as matrices from Fn
p to Fn

p . Let T (1) be a basis element, and P =
∏

peii
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be the minimal polynomial of T (1) over Fn
p , factored into irreducible polynomials. We can decompose our

space Fn
p as follows

Fn
p =

⊕
Ker(pi(T

(1)ei) ⊇ Ker(pi(T
(1))).

If we let Si := Ker(pi(T1)
ei) we know that the minimal polynomial of T (1) on each of the Si is a power

of a prime polynomial.

Now let us suppose we have a second matrix M that commutes with T (1) then if v ∈ Si, that is
pi(T

(1))
ei · v = 0, we have that pi(T

(1))
ei
M · v = Mpi(T )

ei · v = M · 0 = 0 thus M · Si ⊆ Si.

Recursively, we can now pick the next basis element T (2) and restrict it to Si. Then we look at its
minimal polynomial on the space Si, let us call them Pi =

∏
p
eij
ij . We can then furthermore decompose

the space Si as follows
Si =

⊕
Ker(pij(T

(2))
eij

).

On Sij , T (2) has minimal polynomial peijij , and T (1) has minimal polynomial peii . After completing this
procedure for each basis element, we have the decomposition

T =
⊕

Tk ≃
∏

p prime

Tp.

We can write each Tp as the intersection of Ker(qe) with q being an irreducible polynomial. We are
interested in the dimensions of the T′

k =
⋂
Ker(q), where the q are the same as before because T′

i are
field extensions of Fp.

3.3 Residue degree connection

In this section, we will discuss the connection between the residue degree of local Hecke algebras and the
residue degree of primes in the coefficient field of Hecke eigenforms.

We will be looking at T ⊆ End(Sk(N,C);C) (or any modular forms space of another kind); this is
the ring generated by the Hecke operators Tn for all n ∈ N. A normalized Hecke eigenform can be seen
as a ring homomorphism.

f : TZ → C, Tn → an(f).

And we have the relation between its image, coefficient ring and its ring of integers.

Im(f) Z[an(f)|n ∈ N] Q(an(f)|n ∈ N)

OQf
Qf

= ⊂

⊇

⊂

=

We can project the Hecke algbra TZ to the set Fp[an(f) mod p|n ∈ N] by first projecting TZ to TZ/pTZ,
which is equal to TZ ⊗Z Fp, and then look at its image by the map f , which is defined as the reduction
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of the coefficients of f modulo p. The diagram below then allows us to examine the connection between
the residue degree [Fp : Fp] of the prime p above p and the Hecke algebra TZ.

TZ Z[an(f), n ∈ N] OQf

TZ/pTZ Z[an(f)|n ∈ N]/pZ[an(f), n ∈ N] OQf
/pOQf

∏
p|pmod

OQf
/pepOQf

TZ ⊗Z Fp Fp[an(f) mod p|n ∈ N] OQf
/p = Fp

⊂

⊂ ⊂

πp

f̄

=

⊆

An important note is that the ring of integers is not the same as the integers in addition to the
coefficients of the eigenform. It is of finite index. If p divides [OQf

/p : Fp] we will not get the desired
residue degrees by the reduction mod p, however we do not expect this to happen for many N . Thus, we
will assume p does not divide the index we will a and see where that leads us. Or at least, as in our case,
it gives us some idea about understanding the behaviour asymptotically.

To further explain the residue connection we will look at TFp . Since TFp is an Artin ring prime ideals
are maximal. Thus, we can write TFp as a product of local algebras TFp,p where p is a prime ideal, that
is:

TZ/pTZ =: TFp =
∏
p|p

TFp,p.

We can generate the prime ideals using the image of the reduced mod p Hecke eigenform f̄ , by the
ring homomorphism map, that is:

pf = ker(f̄)

And have the natural surjection, that is also a ring homomorphism with kernel pf that goes to a
residue field connecting the two residue degrees by commutative algebra, described below

TFp TFp,pf Fp[an(f) mod pf , n ∈ N]

f

TFp,p/p = TFp/pf = TFp/ker(f) ≃ Im(f) = Fp[an(f) mod pf , n ∈ N] ⊆ OQf
/p.

Taking into account that the last subset is an equaliy if the index of p divides [OQf
/p : Fp].

We can similarly read the argument backwards as follows. Let TFp =
∏

p TFp , p, we want to give
meanings to the residue degrees. Fix a maximal ideal p we have an associated map f̄ to the ideal,
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f̄ : TFp TFp,p

TZ TFp,p/p TFp/p F̄p.

Tn→f̄(Tn)

= ⊆

Proposition 3.3.1

Given a ring homomorphism f̄ : TZ → F̄p (or a smaller extension), we fix a π : Z ↠ Fp then there
exists a ring homomorphism f : TZ → Z ⊆ C such that TZ −→

f
Z −→

π
Fp equals f .

If f is a Hecke eigenform and f̄(Tn) = π(an(f)) then we can write f as
∑∞

n an(f)q
n =

∑∞
n f(Tn)q

n

and we can think of π(an(f)) = an(f) mod p, for suitable p. We have the equalities

Fp[π(an(f))|n ∈ N)] = Im(f̄) = π(Im(f)).

And we also have the relations

Z ⊆ Im(f) = Z[an(f)|n ∈ N] OQf
Z C

OQf
/p Fp

⊂
α

⊂
π

⊂

that show that Ker(α) = p.
Let’s now assume that T is a commutative finite dimensional Fp algebra, with an Fp basis T1, ..., Tn.

If we let H be a subalgebra of T, then H is local only if the minimal polynomial of each Ti is a power of
an irreducible polynomial. Note that

Suppose now that it is local. Then, the residue field is the extension of Fp generated by the images
of the basis elements, and the residue field is the splitting field of all the minimal polynomials fi seen in
the diagram below.

T T/p Fpd

Ti Ti mod p ai

=

∈

:=

∈

We have that 0 = fei
i (Ti) =⇒ fi(ai)

ei = 0 =⇒ fi(ai) = 0. A consequence is that over Fp, there
is a unique extension of a given degree, which is normal. The splitting field of the composition of the
Fp[X]/(fi(X)) = Fpdi ,so it is equal to Fpd where d = lcm(d1, . . . , dn) and di is the degree of the irreducible
polynomial fi.
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Chapter 4

Experiments

In this chapter, we will be looking at calculations and observations made by studying the asymptotic
behaviour of the maximal residue degree of primes p in the coefficient field Qf of Hecke eigenforms lying
in Snew

k (N,C).
We should note that we only made calculations for prime levels, and N = 1, as this allows us to

calculate the newspace Snew
k (N ;C) quickly and at the same time we do not lose any information asymp-

totically.
The author made all the calculations using [14, Sagemath].

Golomb Dickman Constant

The motivation for our calculations came from the question: Is the maximal residue degree ap of the
Hecke algebra over Fp related to the expected average maximum length bd of a cycle in a permutation in
the permutation group Sd? Here d is equal to dimC(Sk(N ;C))/2. The idea comes from the fact that if
we pick a random polynomial with integer coefficient, it is irreducible and has Galois group equal to the
full symmetric group Sd where d is the degree of the polynomial. The Hecke algebra for a normalized
eigenform f ∈ Snew

k (N : C) has a so called Atkin-Lehner involution that splits the algebra into two equally
dimensional subalgebras. Other than that, we should not expect the space to break down any further
unless there is a special reason for it to do so.

If p is unramified in Qf , then Frobp is well-defined up to conjugacy and can be viewed as an element
of the permutation group. Then, by proposision 4.0.1 we can connect this Frobp to the residue degrees
of prime ideals p over p.

Proposition 4.0.1

Let M/K be a separable field extension of degree d, where K is a number field. Let p be a prime of
K and P be a prime of L dividing p. We suppose that P/p is unramified. Then the cycle lengths in
the cycle decomposition of FrobP/p ∈ Sd are precisely the residue degrees of the primes of M lying
above p [18].

35
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Together with Chebotarev Density Theorem, as we vary p, we expect the maximal residue degree of
primes p over p in Qf to be related to bd where d is the degree of the number field Qf . We want to
see what happens if we fix p and vary the weight or the level to see whether we can develop a similar
statistical statement.

Golomb and Gaal [4] already studied the behaviour of the average maximal length of a cycle permu-
tation. They noticed that if bn is the average, taken over all the permutations of a set of n elements, of
the longest cycle in each permutation. Then

λ := lim
n→∞

bn
n
≈ 0.6243 . . . .

This constant is called the Golomb-Dickman constant because of its relation to the Dickman function; it
also appears in connection with the average size of the largest prime factor of an integer, that is

λ = lim
n→∞

log(P1(k))

log(k)
,

where P1(k) is the largest prime factor of k.

We want to know if there is a similar relationship with the degree d of the cuspidal space Sk(N ;C) and
the maximal residue degree ap, of primes p over some prime p ∈ N. That is if there is a linear relationship.
We should account for a factor of two since, for prime levels, an Atkin-Lehner involution splits the Hecke
algebra into two equal-dimensional subspaces. We want to see if we have the relation

lim
N→∞

ap(N)/dimC(Sk(N : C)) ∼ λ/2.

4.1 Fixed Level

We first fixed the level N = 1 to use Maeda’s conjecture. Plot 4.1 shows that for primes above 101, the
maximal residue degree does not seem to go higher than 7, and the maximal residue degree of primes
above 53 behaves similarly. The residue degrees do not exceed 4. Furthermore, the behaviour of the
residue degree seems to become periodic after a certain point as we increase the weight. This can be
explained by a Theorem by Jochnowitz [7] stating that if we know all eigenforms of level 1 and weight
≤ p + 1, then we essentially get all the eigenforms over Fp in all weights by multiplying those of low
weights by Ap, where Ap = 1 is a modular form of weight p− 1 and level 1 over Fp.

Additionally, we performed experiments by fixing the level N > 1, see 4.2, and we noticed the same
behaviour. After a certain point, the maximal residue degree does not increase. The plots lead us to
believe that experiments with fixed weights might be more fruitful.
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Figure 4.1: The asymptotic behaviour of the maximal residue degree of prime ideals in Qf for level N = 1.

4.2 Fixed Weights

Calculating the residue degrees of primes in Qf for modular forms f of levels ≥ 2 is more complex, so we
will use the before-mentioned algorithms to calculate the residue degrees of the Hecke algebras instead.

When we calculated the residue degrees for Hecke algebras, with f ∈ Sk(N,C) with a fixed weight k

and prime p and varying level, we noticed a clear trend 4.3. The data points form a cone. We calculated
the slopes of the lines that best fit our data. At a quick glance, the slopes do not follow any noticeable
pattern. The slopes do not agree if we change the weight k or the prime p. However, if we fix p and plot
the slope of the best-fit line for different weights, we notice a pattern, see 4.4. We get the same slope
for different levels when the weight becomes big enough. This means that some chaotic behaviour occurs
for low levels, but after a certain point, the behaviour becomes regular. This result is in the spirit of
the generalized Maeda’s conjecture. In addition, we plotted the value that the line seems to converge to
against the prime p, see 4.4, and we got another interesting result. If we consider the weight k big enough,
we get a relation that looks to depend linearly on p. We could conjecture that

lim
k→∞

lim
N→∞

ap(N)

N
∼ 0.0273p.

Given the time constraint, we could only calculate six data points. We would have to calculate deeper
with respect to N and p to assert the relation confidently.

Next, we plotted the maximal residue degree divided by the dimension of Sk(N,C), see 4.5. The
distribution of points looks rather chaotic, but as we calculated the best-fit line, we got a clear, almost
horizontal line. Supporting the idea that on average ap(N)

Sk(N,C) is a constant.

However, contrary to our predictions, the constant is not obviously related to the Golomb-Dickman
constant. It is not even the same for different weights k, but if we plot the constant against the weight
for a fixed p, see 4.6, we notice the graphs are similar for different p. Furthermore, the simple function
13/k is close to the plots we observe. Supporting the conjecture that the limit below is independent of p
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and that

lim
n→∞

n∑
N=1

ap(N)/dim(Sk(N ;C)
n

∼ 13/k.

4.3 Future questions

Even though our heuristics were incorrect, we now understand that the structure of the coefficient field
of normalized Hecke eigenforms is more complex than our first guess. We want to be able to understand
this behaviour. The next step would be to gather more data points to see if the limiting behaviour of
the slopes ap(N)/N continues even if we calculate large weights. It would also be interesting to see if the
relation

lim
k→∞

lim
N→∞

ap(N)

N
∼ 0.0273p.

holds for bigger primes. We would also like to understand why we seem to get the relation

lim
n→∞

n∑
N=1

ap(N)/dim(Sk(N ;C)
n

∼ 13/k.

To better understand the Hecke algebra, we could calculate the Galois group of the minimal polynomial
of Hecke operators and find some patterns to explain our observed behaviour.

We could also study the average residue degree instead of the maximal residue degree. We could also
look at modular forms with respect to Γ0(N) with a character. Furthermore, we could look at modular
forms with respect to Γ1(N). However, this will become computationally much more expensive since the
dimension of the space grows by a squared factor contrary to a linear factor when working with Γ0(N).
Before making generalizations, we should aim to understand the behaviour for the simplest case.
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Figure 4.2: Plots of fixed level and varying weights
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Figure 4.3: Fixed weight and varying levels
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Figure 4.4: Slopes, fixed prime varying weights
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Figure 4.5: Normalized plots of fixed level and varying weights
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Figure 4.6: The average of ap/dim(Sk), fixed prime varying weights



44 CHAPTER 4. EXPERIMENTS



Bibliography

[1] Ghitza A. and A. McAndrew. Experimental evidence for Maeda’s conjecture on modular forms. 2012.
arXiv: 1207.3480 [math.NT].

[2] H. Cohen. A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics.
Springer Berlin Heidelberg, 2013.

[3] F. Diamond and J. Shurman. A First Course in Modular Forms. Graduate Texts in Mathematics.
Springer New York, 2006.

[4] S.W. Golomb and P. Gaal. Probabilistic methods in discrete mathematics: Proceedings of the Fourth
international petrozavodsk conference, Petrozavodsk, Russia, June 3-7, 1996. VSP, 1996, pp. 211–
218.

[5] H. Hida and Y. Maeda. “Non-abelian base change for totally real fields.” In: Pacific Journal of
Mathematics, (Special Issue) (1997), pp. 189–217.

[6] I. Inam and E. Büyükaşık. Notes from the International Autumn School on Computational Number
Theory. Tutorials, schools, and workshops in the mathematical sciences. Springer International
Publishing, 2019.

[7] N. Jochnowitz. “Congruences Between Systems of Eigenvalues of Modular Forms”. In: Transactions
of the American Mathematical Society 270.1 (1982), pp. 269–285. url: http://www.jstor.org/
stable/1999772.

[8] L.J.P. Kilford. Modular Forms: A Classical and Computational Introduction. Imperial College Press,
2008.

[9] T.K. Koopa, W.A Stein, and G. Wiese. “On the generation of the coefficient field of a newform by a
single Hecke eigenvalue”. en. In: Journal de théorie des nombres de Bordeaux 20.2 (2008), pp. 373–
384. doi: 10.5802/jtnb.633.

[10] S. Lang. Introduction to Modular Forms. 2001.

[11] K. Martin. “An on-average Maeda-type conjecture in the level aspect”. In: Proceedings of the Amer-
ican Mathematical Society 149.4 (Feb. 2021), pp. 1373–1386.

[12] A. McAndrew. “Maeda’s Conjecture on Elliptic and Siegel Modular Forms”. Available at http:

//math.bu.edu/people/angusmca/Research/Thesis_1.pdf. PhD thesis. The University of
Melbourne, Nov. 2013.

45

https://arxiv.org/abs/1207.3480
http://www.jstor.org/stable/1999772
http://www.jstor.org/stable/1999772
https://doi.org/10.5802/jtnb.633
http://math.bu.edu/people/angusmca/Research/Thesis_1.pdf
http://math.bu.edu/people/angusmca/Research/Thesis_1.pdf


46 BIBLIOGRAPHY

[13] T. Miyake and Y. Maeda. Modular Forms. Springer Monographs in Mathematics. Springer Berlin
Heidelberg, 2006.

[14] The Sage Developers. SageMath, the Sage Mathematics Software System (Version x.y.z). 2023. url:
https://www.sagemath.org.

[15] J.P. Serre. A course in arithmetic. Springer, 1993.

[16] W.A. Stein. Modular Forms, a Computational Approach. Graduate studies in mathematics. Ameri-
can Mathematical Society, 2007. isbn: 9780821839607.

[17] J.G. Thompson. “Hecke operators and non congruence subgroups”. In: Proceedings of the Singapore
Group Theory Conference held at the National University of Singapore, June 8–19, 1987. Ed. by
Kai N. Cheng and Yu K. Leong. Berlin, Boston: De Gruyter, 1989, pp. 215–224. doi: doi:10.1515/
9783110848397-016.

[18] G. Wiese. An Application of Maeda’s Conjecture to the Inverse Galois Problem. 2013. arXiv: 1210.
7157 [math.NT].

[19] G. Wiese. “Modular Forms of Weight One Over Finite Fields”. Available at https://math.uni.lu/
wiese/thesis/Thesis.pdf. PhD thesis. Universiteit Leiden, Oct. 2005.

https://www.sagemath.org
https://doi.org/doi:10.1515/9783110848397-016
https://doi.org/doi:10.1515/9783110848397-016
https://arxiv.org/abs/1210.7157
https://arxiv.org/abs/1210.7157
https://math.uni.lu/wiese/thesis/Thesis.pdf
https://math.uni.lu/wiese/thesis/Thesis.pdf

	Background
	Brief Introduction to Modular Forms
	Hecke Operators
	Hecke Algebras and the q-Pairing
	Newforms

	Modular Symbols
	Modular Symbols Formalism
	Hecke Operators on Modular Symbols
	Modular Forms Over General Rings

	Methods
	Maeda and Kummer
	Local Algebras
	Residue degree connection

	Experiments
	Fixed Level
	Fixed Weights
	Future questions


