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Motivation
A classical application of modular forms is to find equalities of arithmetical functions, by finding
modular forms whose Fourier coefficients are those arithmetical functions, and then finding identities
of modular forms which follow from dimensional considerations. Our goal for this session will be to
prove the following well know identities:

σ7(n) = σ3(n) +

n−1∑
i=1

σ3(i)σ3(n− i)

11σ9(n) = 21σ5(n)− 10σ3(n) + 5040

n−1∑
i=1

σ3(i)σ5(n− i)

σ13(n) = 21σ5(n)− 20σ7(n) + 10080

n−1∑
i=1

σ5(i)σ7(n− i)

We note that these identities can be proved without using modular forms, but once we have set up
enough of the theory of modular forms, results like these follow almost immediately.

entre deux vérités du domaine réel, le chemin le plus facile et le plus court passe bien
souvent par le domaine complex.

-Paul PainLevé.

1 Introduction to Modular Forms
We define the full modular group

Γ := SL2(Z) =
{(

a b
c d

)
, a, b, c, d ∈ Z, ad− bc = 1

}

Exercise 1.1. Show that
Γ/ {±1} ∼=

〈
S, T |S2 = I, (ST )3 = I

〉
Where S =

(
0 1
−1 0

)
and T =

(
1 1
0 1

)
Next we can define an action of elements of Γ on the Riemann sphere Ĉ := C ∪ {∞} by

f(z) =

[
a b
c d

]
(z) =

az + b

cz + d
, z ∈ C

And we extend this to the whole Riemann sphere by defining f(−d/c) = ∞ and f(∞) = a/c. These
transformations are known as Mobius transformations.

We define the Poincaré upper half plane as

H = {z ∈ C|ℑ(z) > 0}

Exercise 1.2. Proof that γz ∈ Ĥ := H ∪ {∞} for γ ∈ Γ and z ∈ Ĥ.
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Figure 1: Above we can see a visual representation of the action of the group G := Γ on the striped
area.

If f : H → C is a meromorphic function which satisfies the transformation formula

f(γz) = (cz + d)kf(z), γ =

[
a b
c d

]
∈ Γ, z ∈ H

then we say that f is weakly modular of weight k for Γ in particular

f(Sz) = f(−1/z) = (−z)kf(z)f(Tz) = f(z + 1) = f(z)

The second equation tells us that f has a Fourier expansion of the following form in a suitable neigh-
borhood of the origin, wit the origin removed:

f(q) =
∑
n∈Z

anq
n, with q := e2πiz;

If there exists a m such that an = 0 for n < m we say that f is meromorphic at ∞. If in addition
to this an = 0 for all n < 0, then we say that f holomorphic at ∞

We call f(q) the Fourier expansion of f at ∞, or simply the Fourier expansion of f .

Definition 1.1 (Modular form)

Let k be an integer. We say that a meromorphic function f : H → C is a modular form of weight
k for Γ if

1. f is weakly modular of weight k for Γ

2. f is holomorphic on H

3. f is holomorphic at ∞

We call the set of all modular forms of weight k for Γ, denoted Mk(Γ) or simply Mk.

We define the value of f at ∞ to be the limit f(z) as z → i∞, and write it as f(∞). If f is zero
at infinity then we call f a cusp form.The set of cusp forms for Γ, denoted Sk(Γ) or simply Sk.

Exercise 1.3. Let f ∈ Mk(Γ) and g, h ∈ Ml(Γ) then fg ∈ Mk+l(Γ), also note that cg ∈ Ml(Γ), for
all c ∈ C and g+ h ∈ Ml(Γ). This gives the set of modular forms of weight k a structure of a C vector
space and in addition gives the set of all modular forms on Γ, denoted M(Γ) a structure of a graded
C-algebra.

Show a similar result for Sk.

One other way to look at Sk is that it is the kernel of the map Mk → C, f → f(∞).
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The condition for a function to be a modular form is rather strong and one naturally can ask what
are examples of them.

First we can note that if f is a modular form of weight k then

f

([
−1 0
0 −1

]
z

)
= f(z) = (−1)kf(z)

so if k is an odd number then f(z) = −f(z) and therefore f must be the zero function. In the next
section we will see an example of a nontrivial modular form.

2 Eisenstein series

Proposition 2.1 (Eisenstein series)

Let k be an even integer which is at least 4 and let z ∈ H. The function

Gk(z) =
∑

(m,n)∈Z2

(n,m) ̸=(0,0)

1

(mz + n)k

is a modular form of weight k for Γ.

Proof

First we show that Gk(z) is holomorphic on H and at ∞. Fix A,B ∈ R+ and then define DA,B

to be the set of z ∈ H such that Im(z) > A and |Re(z)| < B It’s possible to show that there
exists a C > 0 such that for all (ν, µ) ∈ R2−{0} and all z ∈ DA,B then |νz+µ| > C sup(|ν|, |µ|).
Note that the number of elements of Z2 such that the taxicab norm is equal to a given number
s ∈ N+ is equal to 8s. Now we have

|Gk(z)| ≤
∑

(m,n)∈Z2

(n,m)̸=(0,0)

1

|mz + n|k
≤ 1

Ck

∑
(m,n)∈Z2

(n,m)̸=(0,0)

1

sup(n,m)k
≤ 1

Ck

∑
(m,n)∈Z2

(n,m)̸=(0,0)

8s

sk

This means that the series converges normally on DA,B and therefore Gk(z) is a holomorphic
function on H. By absolute convergence of Gk(z) along with the bijection

(n,m) → (m,n+m), (n,m) → (n,−m)

give us the relations
Gk(z + 1) = Gk(z), Gk(−1/z) = zkGk(z)

for all z ∈ H.
To show that Gk(z) is finite at ∞, we will show that Gk(z) approaches an explicit finite limit
as z → i∞. The terms of Gk(z) are of the form 1/(mz + n)k, those which have m ̸= 0 will
contribute 0 to the sum, while those which have m = 0 each contribute 1/nk. Therefore we have

lim
z→i∞

Gk(z) =
∑

0̸=n∈Z

1

nk
= 2ζ(k)

Now let us suppose that z satisfies |z| ≥ 1 and ℜ(z) ≤ 1/2; we
■

Exercise 2.1. Proof that there exists a C > 0 such that for all (ν, µ) ∈ R2 − {0} and all z ∈ DA,B

then |νz + µ| > C sup(|ν|, |µ|) We can see from the proof that Gk(z) is not zero at infinity.
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3 Bernoulli numbers

Definition 3.1 (Bernouilli numbers)

We will define the Bernouilli numbers, Bn, to be the numbers that satisfy the equation

t

et − 1
=

∞∑
m=0

Bm
tm

m!

Exercise 3.1. Show that B1 = −1/2, B2 = 1/6, B3 = 0 and B4 = −1/30 and that B2r+1 = 0 for
r ≥ 1.

If a prime does not divide the numerator of any of the Bernoulli numbers B2, B4, . . . , Bp−3 then it
is said to be a regular prime and irregular otherwise. Ernst Kummer proved that for all regular primes
Fermat’s equation with regular prime exponents is unsolvable.

Siegel conjectured has that about 61% of primes are regular, which would lead to the statement that
there are infinitely many regular primes however no one has been able to prove the two conjectures.
Jensen however proved in a short paper in 1915 that there are infinitely many irregular primes.

Another interesting fact about Bernoulli numbers are their relations to the Riemann zeta function
via euler’s celebrated formulas

ζ(2k) = (−1)k−1 (2π)
2k

(2k)!

B2k

2
, ζ(1− k) = −Bk

k

4 Fourier expansions of Modular forms
The Fourier expansions of modular forms are very arithmetically interesting, for example, many mod-
ular forms have Fourier coefficients which are multiplicative or satisfy recurrence relations.

We have already seen that a modular form f has a Fourier expansion in some suitable neighborhood
of the origin. We also computed the first coefficient a0 of the Fourier expansion of Gk(z). We will now
exhibit the complete Fourier expansion of Gk(z).

Proposition 4.1

Let k ≥ 4 be an even integer, and let z ∈ H. The modular form Gk(z) has Fourier expansion

Gk(z) = 2ζ + 2
(2πi)

(k − 1)!

∞∑
n=1

σk−1(n)q
n,

where we define σk(n) to be the function

σk(n) :=
∑

0<m|n

mk

Proof

Using the identity 1
z +

∑∞
n=1

(
1

z+n + 1
z−n

)
= π

tan(πz) we will proof the result, note that the
series on the left is absolutely convergent. The function on the right is periodic of period 1 and
therefore has a Fourier expansion given by

π

tan(πz)
= π

cos(πz)

sin(πz)
= πi

eπiz + e−πiz

eπiz − e−πiz
= −πi

1 + q

1− q
= 2πi

(
1

2
+

∞∑
r=1

qr

)
,

where q = e2πiz. Using this relation and differentiating the first equation k− 1 times and divide
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by (−1)k−1(k − 1)! to get
1

zk

∞∑
n=1

(
1

(z + n)k
+

1

(z − n)k

)
now for the Fourier expansion of GK(z)

Gk(z) =
1

2

∑
0̸=n∈Z

1

nk
+

1

2

∑
(m,n)∈Z2

m ̸=0

1

sup(n,m)k
=

∞∑
n=1

1

nk
+

∞∑
m=1

∞∑
n=−∞

1

(mz + n)k

= ζ(k) +
(2πi)k

(k − 1)!

∞∑
m=1

∞∑
r=1

rk−1qmr

=
(2πi)k

(k − 1)!

(
−Bk

2k
+

∞∑
n=1

σk−1(n)q
n

)

■

Exercise 4.1. Show that 1
z+
∑∞

n=1

(
1

z+n + 1
z−n

)
= π

tan(πz) using the formula sin(x) = x2
∏∞

n=1

(
1− x2

n2π2

)
A standard notation for Eisenstein series is to write

Ek(z) :=
Gk(z)

2ζ(k)
,

this is called the normalized Eisenstein series of weight k. For these modular forms the following
identities hold:

Ek(q) = 1− 2k

Bk

∞∑
n=1

σk−1(n)q
n

E4(q) = 1 + 240

∞∑
n=1

σ3(n)q
n

E6(q) = 1− 504

∞∑
n=1

σ5(n)q
n

E8(q) = 1 + 480

∞∑
n=1

σ7(n)q
n

E10(q) = 1− 264

∞∑
n=1

σ9(n)q
n

E12(q) = 1 +
65520

691

∞∑
n=1

σ11(n)q
n

E14(q) = 1 + 240

∞∑
n=1

σ13(n)q
n

We saw that if k = 2 then the sum in G2 does not converge but what we can do to give E2 some
meaning is to define by following the pattern and defining it by its Fourier expansion
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Proposition 4.2

There is a holomorphic function E2 which has Fourier expansion at ∞

E2(q) = 1− 24

∞∑
n=1

σ1(n)q
n,

which satisfies the following transformation formula

E2

(
az + b

cz + d

)
= (cz + d)2E2(z) +

12

2πi
c(cz + d)

We will not proof this proposition but one can be found in [3]

5 Ramanujan ∆ function
In the early 20th century Srinvasa Ramanujan studied the explicit Fourier expansions of considerations
well-known modular forms, such as the ∆ function, given by

∆(z) := q

∞∏
n=1

(1− qn)24 =

∞∑
n=1

τ(q)qn,

where q = e2πiz. We can expand the product in the definition to get

∆(z) = q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − 16744q8 − 113643q9 + . . .

Ramanujan observed in 1915 that τ(n) is multiplicative, i.e. τ(mn) = τ(m)τ(n) for coprime n and
m.

Proposition 5.1

The function ∆(z) is a cusp form of weight 12.

Proof

Since ∆(z) ̸= 0, we can consider its logarithmic derivative. We find

1

2πi

d

dz
log(∆(z)) =

1

2πi

d

dz

(
q

∞∏
n=1

(1− qn)24

)
=

1

2πi

d

dz

(
log(q) + 24

∞∑
n=1

log(1− qn)

)

Since q = e2πiz we have 1
2πi

d
dz and therefore

1

2πi

d

dz
log(∆(z)) = 1− 24

∞∑
n=1

n
qn

1− qn
= 1− 24

∞∑
n=1

n

∞∑
d=1

qdn = 1− 24

∞∑
n=1

σ1(n)q
n = E2(z).

Now we have already seen that

E2

(
az + b

cz + d

)
= (cz + d)2E2(z) +

12

2πi
c(cz + d).

Combining the equations above and using the fact that

d

dz

(
az + b

cz + d

)
=

1

(cz + d)2

for γ =

(
a b
c d

)
∈ Γ, we deduce that
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1

2πi

d

dz
log

 ∆
(

az+b
cz+d

)
(cz + d)12∆(z)

 =
1

(cz + d)2
E2

(
az + b

cz + d

)
− 12

2πi

c

cz + d
− E2(z) = 0.

In other words, log(∆
(

az+b
cz+d

)
) = log(s(γ))log((cz+d)12∆(z)), where s(γ) is a non zero constant

that depends only on γ that is

∆

(
az + b

cz + d

)
= s(z)(cz + d)12∆(z)

we want to show that s(γ) = 1 for all γ ∈ Γ.

First note that for γ1 =

(
a1 b1
c1 d1

)
and γ2 =

(
a2 b2
c2 d2

)
with γ3 := γ1γ2 =

(
a3 b3
c3 d3

)
we have

s(γ1)s(γ2)∆(z) = s(γ1)∆ (γ2z) (c2z + d2)
−12 = ∆(γ1γ2z)(c3z + d3)

−12 = s(γ1γ2)∆(z).

Therefore s : Γ → C is a homomorphism so we just need to prove that s(T ) = s(S) = 1.

By definition we have ∆(Tz) = ∆(z) so s(T ) = 1 and to show that s(S) = 1 put z = i in the
equation z−12∆(−1

z ) = s(S)∆(z).

■

6 Dimension of Mk(Γ) and Sk(Γ)

We have already seen that Mk and Sk have a structure of a C vector space. In this section we will
look at the dimension of the C vector spaces of modular forms of weight k and cusp forms of weight k.

First let us define the order of a meromorphic function f : H → C at a given point x ∈ H, denoted
vx(f), as the integer n such that f(z)/(z − x)n is holomorphic and non null. We can furthermore
define v∞(f) as the order of f in the Fourier expansion at q = 0. This integer is necessarily positive
since it counts the number of poles of f at x.

When f is a modular form of weight k then the identity

f(z) = (cz + d)−kf(
az + b

cz + d
)

shows us that vx(f) = vγx(f) if γ ∈ Γ. Thus we can define vx̄(f) where x̄ is in the quotient H/Γ
because vx(f) does not depend on the representative of x in H/Γ.

now for a lemma that is very useful when studying the dimension of Mk(Γ) will be stated without
proof but the reader is encouraged to see [7] for a complete proof.

Theorem 6.1 (The k − 12 lemma)

Let f be a modular form of weight k that is not the zero function, then we have the equation:

v∞(f) +
1

2
vi(f) +

1

3
vρ(f) +

∑
x∈H/G

vx(f) =
k

12

Using this lemma we proof the proposition
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Proposition 6.1 (Formulae for the full modular group)

Let k be an integer. Then

• M0(Γ) = C

• M2(Γ) = 0, and if k < 0 or if k is odd then Mk(Γ) = 0

• If k ∈ {4, 6, 8, 10, 14}, then Mk(Γ) = CEk

• If k < 12 or k = 14 then Sk(Γ) = 0, S12(Γ) = C∆ and if k ≥ 16 then Sk(Γ) = ∆Mk−12(Γ)

• If k ≥ 4 then Mk(Γ) = Sk(Γ)⊕ CEk

Proof

i) We know that the constant functions are elements of M0 and we want to show the reverse.
Let f ∈ M0 be an arbitrary modular form of weight 0 and let z ∈ C be any element in the image
of f . Then f(z) − c ∈ M0 has a zero in H, i.e. one of the terms in the equation in the k − 12
lemma is strictly positive. Since the right-hand side is 0, this can only happen if f(z)− c is the
zero function, i.e. f is constant.

ii) We already saw that Mk = 0 if k is odd. if k = 2 or k < 0 then k/12 is negative or 1/6, which
has no positive solutions on the left-hand side

iii) If k ∈ {4, 6, 8, 10, 14}, then there is only one possible way of choosing the vx(f) in the k− 12
lemma is:

• k = 4 : vρ(f) = 1 and all other vx(f) = 0.

• k = 6 : vi(f) = 1 and all other vx(f) = 0.

• k = 8 : vρ(f) = 2 and all other vx(f) = 0.

• k = 10 : vρ(f) = vi(f) = 1 and all other vx(f) = 0.

• k = 14 : vρ(f) = 2, vi(f) = 1 and all other vx(f) = 0.

iv) If f ∈ Sk we have v∞(f) > 0, which is not possible by the k−12 lemma for k < 12 or k = 14.

v) We know that v∞(∆) = 1 and by the k− 12 lemma this can be the only zero of ∆. Therefore
for any f ∈ Sk the function f∆ is a modular form of weight k − 12.

vi) If f ∈ Mk is not a cusp form then its Fourier expansion at ∞ has a non zero constant term c.
We note that f − cEk ia a modular form of weight k and has a zero constant term in its Fourier
expansion, i.e. Mk = CE2

⊕
Sk

■

Theorem 6.2 (Dimenton of Mk(Γ) and Sk(Γ))

Let K be an even positive integer. Then

dimMk(Γ) =

{
⌊ k
12⌋+ 1, if k ̸≡ 2 mod 12

⌊ k
12⌋, if k ≡ 2 mod 12

and

dimSk(Γ) =

{
⌊ k
12⌋, if k ̸≡ 2 mod 12

⌊ k
12⌋ − 1, if k ≡ 2 mod 12
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Proof

We will proceed by induction. We already know the formulas to be true for k ≤ 14. Now by
the 5th point of the proposision above we know that the dimention of Sk is one less than the
dimension of Mk. It suffices to prove the theorem for Mk.

Assume we have proved the formula for k and now we consider the dimension of Mk+12. From
the preceding proposition we see that

Mk+12 = CEk+12

⊕
Sk+12 = CEk+12

⊕
∆Mk,

and now we use the induction hypothesis to get the result.
■

Let’s now show that it can be equivalently defined as

∆ =
E3

4 − E2
6

1728

.

We know that ∆ is a modular form of weight 12. Also by the graded C algebra structure of modular
forms we have that E3

4 , E
2
6 ∈ M12. Now the constant term of E3

4 and E2
6 are both equal to one and

thus E3
4 −E2

6 ∈ S12. But we have seen that the dimension of S12 as a C vector space is equal to one.
We can now see that E3

4 − E2
6 = C∆. Now we can write

E3
4(q) = (1 + 240q +O(q2))3 = 1 + 720q +O(q2)

E2
6(q) = (1− 504q +O(q2))2 = 1− 1008q +O(q2)

E3
4 − E2

6 = 1728q +O(q2)

∆(q) = q +O(q2)

By comparing the coefficients at q we can deduce that C = 1728 proving the formula.

Conclusion
Mathematics is not a spectator sport.

-George Polya.

Exercise 6.1. Proof the following relations:

σ7(n) = σ3(n) +

n−1∑
i=1

σ3(i)σ3(n− i)

11σ9(n) = 21σ5(n)− 10σ3(n) + 5040

n−i∑
i=1

σ3(i)σ5(n− i)

σ13(n) = 21σ5(n)− 20σ7(n) + 10080

n−i∑
i=1

σ5(i)σ7(n− i)

τ(n) ≡ σ11(n) mod 691

Exercise 6.2. Let ∆ = 1
1728 (E

3
4 − E2

6) =
∑∞

n=1 τ(n)q
n and D be the opperator D = 1

2πi
d
dτ = q d

dq

1. Show that the fonction H = 4E4D(E6)− 6E6D(E4) is a modular form of weight 12.
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2. Deduce that

τ(n) =
n

12
(5σ3(n) + 7σ5(n)) +

∑
1≤m≤n

(2n− 5m)σ3(m)σ5(n−m)

3. Conclude that
τ(n) ≡ nσ5(n) ≡ σ1(n) mod 5,

τ(n) ≡ nσ3(n) mod 7.

The reader is encouraged to look through the Bibliography for a more thorough look at the field
of modular forms, in particular [5] for as an Introduction, [7] for a elegant concise view of the basics,
[1] for more interesting congruences and [6] for various applications of modular forms.

10



References
[1] G.E. Andrews and B.C. Berndt. Ramanujan’s Lost Notebook: Part III. ptie. 3. Springer New York,

2012. isbn: 9781461438106. url: https://books.google.fr/books?id=YPWrm2VWDYIC.

[2] Pierre Charlois. Introduction aux formes modulares. Dec. 2022.

[3] F. Diamond and J. Shurman. A First Course in Modular Forms. Graduate Texts in Mathematics.
Springer New York, 2006. isbn: 9780387272269. url: https://books.google.fr/books?id=
EXZCAAAAQBAJ.

[4] I. L. W. V. Jensen and J. L. W. V. Jensen. “Forskellige Bidrag til Ligningernes Theori”. In: Nyt
tidsskrift for matematik 26 (1915), pp. 6–13. issn: 09093524, 24460753. url: http://www.jstor.
org/stable/24532196 (visited on 01/23/2023).

[5] L.J.P. Kilford. Modular Forms: A Classical and Computational Introduction. Imperial College
Press, 2008. isbn: 9781848162136. url: https://books.google.fr/books?id=yuRpDQAAQBAJ.

[6] K. Ranestad et al. The 1-2-3 of Modular Forms: Lectures at a Summer School in Nordfjordeid,
Norway. Universitext. Springer Berlin Heidelberg, 2008. isbn: 9783540741190. url: https://
books.google.fr/books?id=tsTfnHLmgmQC.

[7] Jean-Pierre Serre. A course in arithmetic. Springer, 1993.

11

https://books.google.fr/books?id=YPWrm2VWDYIC
https://books.google.fr/books?id=EXZCAAAAQBAJ
https://books.google.fr/books?id=EXZCAAAAQBAJ
http://www.jstor.org/stable/24532196
http://www.jstor.org/stable/24532196
https://books.google.fr/books?id=yuRpDQAAQBAJ
https://books.google.fr/books?id=tsTfnHLmgmQC
https://books.google.fr/books?id=tsTfnHLmgmQC

	Introduction to Modular Forms
	Eisenstein series
	Bernoulli numbers
	Fourier expansions of Modular forms
	Ramanujan  function
	Dimension of Mk() and Sk()
	Bibliography
	Index

