On the Asymptotic Behavior of the Coefficient Field of Newforms Modulo *p*

Master's Thesis Presentation

Author: Breki Pálsson Advisor: Gabor Wiese September 15th, 2023

Université du Luxembourg

- 1. Background
- 2. Elementary Methods
- 3. Algorithms
- 4. Heuristic
- 5. Experiments

Background

Definition

The *coefficient field* of a modular form f is the subfield of \mathbb{C} generated by all the coefficients a_n of its q-expansion. That is $\mathbb{Q}_f := \mathbb{Q}(a_n(f)|n \in \mathbb{N})$.

Definition

A Modular form that is an eigenvector for T_n where $n \in \mathbb{N}$ is called an *eigenform*. Additionally, an eigenform is said to be *normalized* if the *q*-coefficient in its Fourier series is one, i.e.

$$f = a_0 + q + \sum_{i=2}^{\infty} a_i q^i.$$

Definition

A Modular form that is an eigenvector for T_n where $n \in \mathbb{N}$ is called an *eigenform*. Additionally, an eigenform is said to be *normalized* if the *q*-coefficient in its Fourier series is one, i.e.

$$f = a_0 + q + \sum_{i=2}^{\infty} a_i q^i.$$

{Normalized eigenforms in $M_k(N; \mathbb{C})$ } $\leftrightarrow Hom_{\mathbb{C}-algebra}(\mathbb{T}_{\mathbb{C}}(M_k(N, \mathbb{C})), \mathbb{C}).$

$$M_k(N;\mathbb{C}) \times \mathbb{T}_{\mathbb{C}}(M_k(N;\mathbb{C})) \to \mathbb{C}, \quad (f,T) \to a_1(Tf).$$

Corollary Let $f = \sum_{n=1}^{\infty} a_n(f)q^n \in S_k(\Gamma_1(N); \mathbb{C})$ be a normalized Hecke eigenform. Then $\mathbb{Q}_f := \mathbb{Q}(a_n(f)|n \in \mathbb{N})$ is a number field of degree less than or equal to dim_{\mathbb{C}} $(S_k(\Gamma_1(N, \mathbb{C})).$

$$\mathbb{T}_R(M_k) \simeq \mathbb{T}_R(\mathscr{M}_k)$$

$$M_k(N;\mathbb{C}) = M_k(N;\mathbb{C})^{eis} \oplus S_k(N;\mathbb{C})$$

 $S_k(N;\mathbb{C}) = S_k(N;\mathbb{C})^{old} \oplus S_k(N;\mathbb{C})^{new}.$

Elementary Methods

Conjecture (Maeda)

For any k and any normalized eigenform $f \in S_k(1)$, the coefficient field \mathbb{Q}_f has degree equal to $d_k := \dim_{\mathbb{C}} S_k(1; \mathbb{C})$ and the Galois group of its normal closure over \mathbb{Q} is the symmetric group S_{d_k} .

Conjecture (Maeda)

For any k and any normalized eigenform $f \in S_k(1)$, the coefficient field \mathbb{Q}_f has degree equal to $d_k := \dim_{\mathbb{C}} S_k(1; \mathbb{C})$ and the Galois group of its normal closure over \mathbb{Q} is the symmetric group S_{d_k} .

A consequence: Characteristic polynomial of T_2 on $S_k(1)$ is irreducible for any k.

 $\mathbb{Q}_f := \mathbb{Q}(a_2(f))$

Theorem (Dedekind-Kummer)

Let F be a number field and $\alpha \in \mathcal{O}_F$ be such that $F = \mathbb{Q}(\alpha)$. Let $f \in \mathbb{Z}[x]$ be the minimal polynomial of α over \mathbb{Z} and suppose p does not divide ind (α) . Let

$$\overline{f} = \prod_{j=1}^{k} \overline{f_j}^{e_j} \in \mathbb{F}_p[x]$$

be the factorization in monic irreducible polynomials, and define $P_j := (p, f_j(\alpha))$ where f_j is any lift of \overline{f}_j to $\mathbb{Z}[x]$. Then

$$p\mathcal{O}_F = \prod_{j=1}^k P_j^{\mathbf{e}_j}.$$

Result: Residue degrees of the Hecke Algebra of $S_k(N, \mathbb{C})$ over \mathbb{F}_p

Result: Residue degrees of the Hecke Algebra of $S_k(N, \mathbb{C})$ over \mathbb{F}_p Calculate $d = \dim_{\mathbb{F}_p}(\mathbb{T}) = \dim_{\mathbb{F}_p}(S_k(N));$ $M \leftarrow 0 \subset MatrixAlgebra(\mathbb{F}_p, d);$

Result: Residue degrees of the Hecke Algebra of $S_k(N, \mathbb{C})$ over \mathbb{F}_p Calculate $d = \dim_{\mathbb{F}_p}(\mathbb{T}) = \dim_{\mathbb{F}_p}(S_k(N));$ $M \leftarrow 0 \subset \text{MatrixAlgebra}(\mathbb{F}_p, d);$ while $\dim(M) \neq d$ do $| M \leftarrow M + \langle T_n \rangle;$ end

Result: Residue degrees of the Hecke Algebra of $S_k(N, \mathbb{C})$ over \mathbb{F}_p Calculate $d = \dim_{\mathbb{F}_p}(\mathbb{T}) = \dim_{\mathbb{F}_p}(S_k(N))$; $M \leftarrow 0 \subset MatrixAlgebra(\mathbb{F}_p, d)$; while $\dim(M) \neq d$ do $| M \leftarrow M + \langle T_n \rangle$; end Get a \mathbb{F}_p basis of $M : T^{(1)}, \ldots, T^{(d)}$; Localize $M = \prod_{p|p} M_p$;

Calculate the residue degrees of M_p ;

Data: A basis $\{T^{(1)}, \ldots, T^{(d)}\}$ of the commutative finite dimensional \mathbb{F}_p -algebra \mathbb{T} **Result:** Local components of the Hecke algebra

Data: A basis $\{T^{(1)}, \ldots, T^{(d)}\}$ of the commutative finite dimensional \mathbb{F}_p -algebra \mathbb{T} **Result:** Local components of the Hecke algebra $S \leftarrow [\mathbb{F}_p^n];$

Data: A basis $\{T^{(1)}, \ldots, T^{(d)}\}$ of the commutative finite dimensional \mathbb{F}_p -algebra \mathbb{T} Result: Local components of the Hecke algebra $S \leftarrow [\mathbb{F}_p^n];$ for $T \in \{T^{(1)}, \ldots, T^{(d)}\}$ do $S_{new} \leftarrow [];$

Data: A basis $\{T^{(1)}, \ldots, T^{(d)}\}$ of the commutative finite dimensional \mathbb{F}_p -algebra \mathbb{T} **Result:** Local components of the Hecke algebra $S \leftarrow [\mathbb{F}_p^n];$ for $T \in \{T^{(1)}, \ldots, T^{(d)}\}$ do $\begin{cases} S_{new} \leftarrow []; \\ \text{for } S_i \in S \text{ do} \\ \\ \\ \end{cases}$ Find minimal polynomial P of T on $S_i;$

Data: A basis $\{T^{(1)}, \ldots, T^{(d)}\}$ of the commutative finite dimensional \mathbb{F}_{p} -algebra \mathbb{T} **Result:** Local components of the Hecke algebra $S \leftarrow [\mathbb{F}_{p}^{n}];$ for $T \in \{T^{(1)}, \ldots, T^{(d)}\}$ do $\begin{vmatrix} S_{new} \leftarrow []; \\ \text{for } S_{i} \in S \text{ do} \\ \\ \\ Find minimal polynomial <math>P$ of T on $S_{i};$ Factor $P = \prod p_{i}^{e_{i}}$ into irreducible polynomials;

Data: A basis $\{T^{(1)}, \ldots, T^{(d)}\}$ of the commutative finite dimensional \mathbb{F}_p -algebra \mathbb{T} Result: Local components of the Hecke algebra $S \leftarrow [\mathbb{F}_{p}^{n}];$ for $T \in \{T^{(1)}, \ldots, T^{(d)}\}$ do $S_{new} \leftarrow []:$ for $S_i \in S$ do Find minimal polynomial P of T on S_i ; Factor $P = \prod p_i^{e_i}$ into irreducible polynomials; for irreducible factor p_i in the factorization of P do $S_{new} \leftarrow S_{new} + [Ker(p_i^{e_i}(T))]$ end

Data: A basis $\{T^{(1)}, \ldots, T^{(d)}\}$ of the commutative finite dimensional \mathbb{F}_p -algebra \mathbb{T} Result: Local components of the Hecke algebra $S \leftarrow [\mathbb{F}_p^n];$ for $T \in \{T^{(1)}, \ldots, T^{(d)}\}$ do $S_{new} \leftarrow []:$ for $S_i \in S$ do Find minimal polynomial P of T on S_i ; Factor $P = \prod p_i^{e_i}$ into irreducible polynomials; **for** irreducible factor p_i in the factorization of P **do** $S_{new} \leftarrow S_{new} + [Ker(p_i^{e_i}(T))]$ end end $S \leftarrow S_{new}$: end return S

$$\begin{split} \mathbb{F}_p^n &= \bigoplus \operatorname{Ker}(p_i(T^{(1)^{e_i}}) \supseteq \bigoplus \operatorname{Ker}(p_i(T^{(1)})). \quad S_i := \operatorname{Ker}(p_i(T_1)^{e_i}). \\ S_i &= \bigoplus \operatorname{Ker}(p_{ij}(T^{(2)})^{e_{ij}}). \qquad \qquad M \cdot S_i \subseteq S_i. \end{split}$$

$$\begin{split} \mathbb{F}_p^n &= \bigoplus \operatorname{Ker}(p_i(T^{(1)^{e_i}}) \supseteq \bigoplus \operatorname{Ker}(p_i(T^{(1)})). \quad S_i := \operatorname{Ker}(p_i(T_1)^{e_i}). \\ S_i &= \bigoplus \operatorname{Ker}(p_{ij}(T^{(2)})^{e_{ij}}). \qquad \qquad M \cdot S_i \subseteq S_i. \end{split}$$

$$\mathbb{T}_{\mathbb{F}_p,\mathfrak{p}} = \cap_g \ker(g^e) \implies d = \operatorname{\mathsf{lcm}}(deg(g))$$

Heuristic

Question: Is the maximal residue degree, a_p , of primes above p in \mathbb{Q}_f related to b_n , the average maximum length of a cycle in a permutation of S_n ?

Question: Is the maximal residue degree, a_p , of primes above p in \mathbb{Q}_f related to b_n , the average maximum length of a cycle in a permutation of S_n ?

$$\lambda := \lim_{n \to \infty} \frac{b_n}{n} \approx 0.6243...$$
 (Golomb and Gaal)

Question: Is the maximal residue degree, a_p , of primes above p in \mathbb{Q}_f related to b_n , the average maximum length of a cycle in a permutation of S_n ?

$$\lambda := \lim_{n \to \infty} \frac{b_n}{n} \approx 0.6243...$$
 (Golomb and Gaal)

$$\lim_{n\to\infty}a_p(N)/dim(S_k(N;\mathbb{C}))\sim\lambda/2$$

Proposition

Let M/K be a separable field extension of degree d, where K is a number field. Let \mathfrak{p} be a prime of K and \mathfrak{P} be a prime of L dividing \mathfrak{p} . We suppose that $\mathfrak{P}/\mathfrak{p}$ is unramified. Then the cycle lengths in the cycle decomposition of $\operatorname{Frob}_{\mathfrak{P}/p} \in S_d$ are precisely the residue degrees of the primes of M lying above \mathfrak{p} . Let f be a monic irreducible polynomial of deg d with integer coefficients with a root α . Let $K = \mathbb{Q}(\alpha)$. Let A denote the set of unramified primes, P be a partition of $d = (d_1, \ldots, d_n)$ and A_P denote the set of primes such that f factors over p as

$$f = f_1 \dots f_n$$

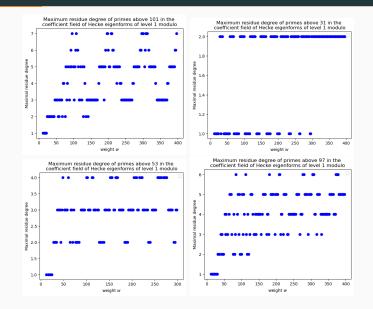
where f_i is an irreducible polynomial of degree d_i .

Now consider the Galois group $G \subseteq S_d$ of the number field K. Let G_P be the set of elements of G consisting of cycles of length d_1, \ldots, d_n . Then

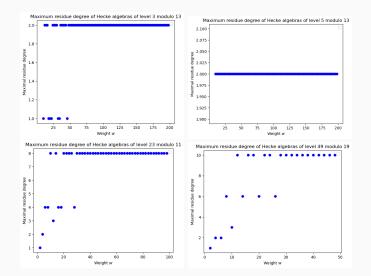
$$\delta(A_P) = \lim_{N \to \infty} \frac{\#\{p \in A_P : p \le N\}}{\#\{p \in A : p \le N\}} = \frac{G_P}{G}.$$

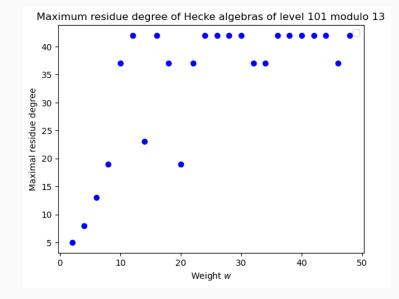
Experiments

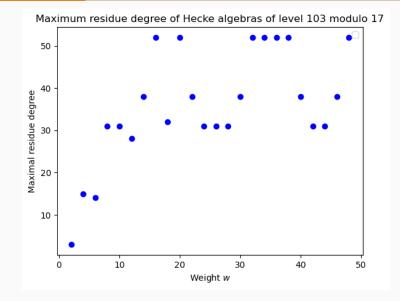
Plots: Fixed Level N = 1

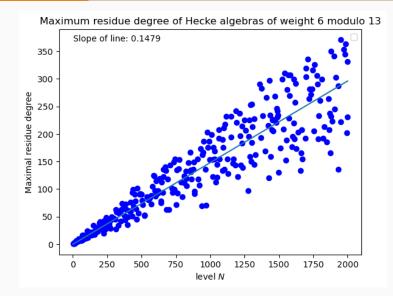


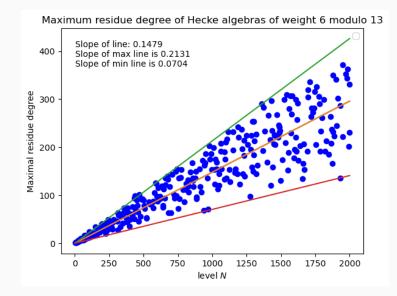
If we know all eigenforms of level 1 and weight $\leq p + 1$, then we essentially get all the eigenforms over \mathbb{F}_p in all weights by multiplying those of low weights by A_p , where $A_p = 1$ is a modular form of weight p - 1 and level 1 over \mathbb{F}_p .

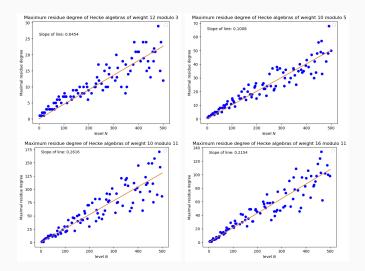


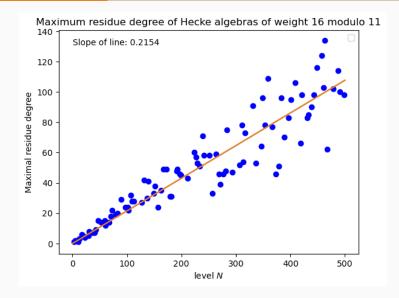


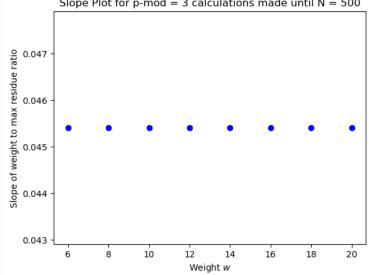




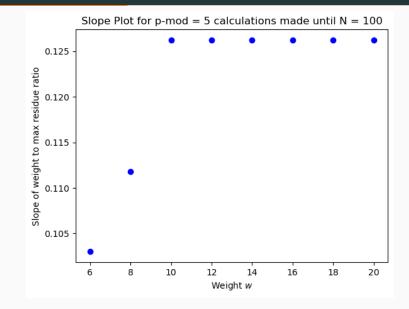


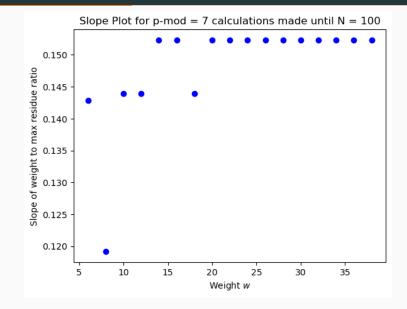


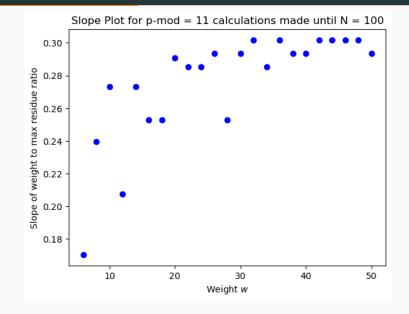


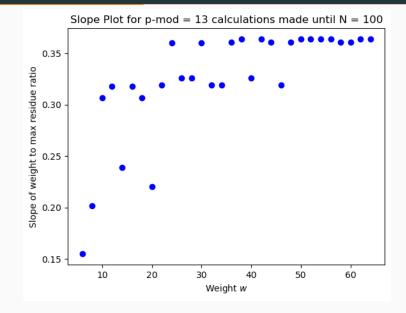


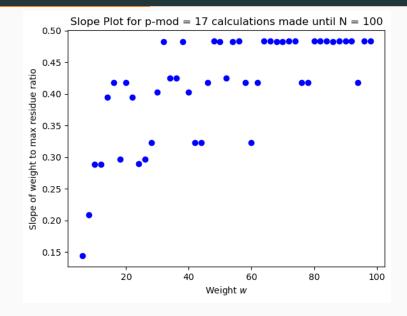
Slope Plot for p-mod = 3 calculations made until N = 500

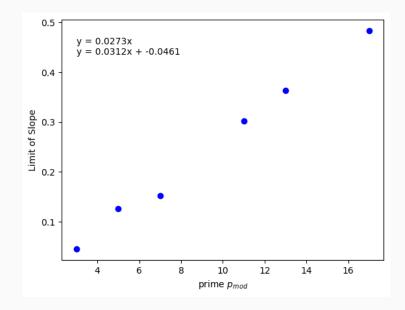


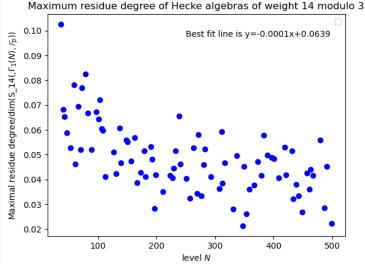


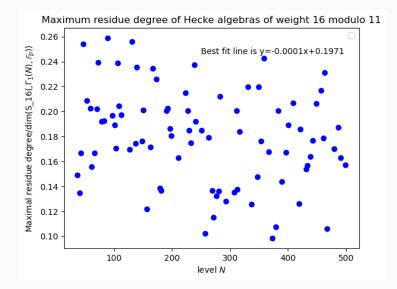


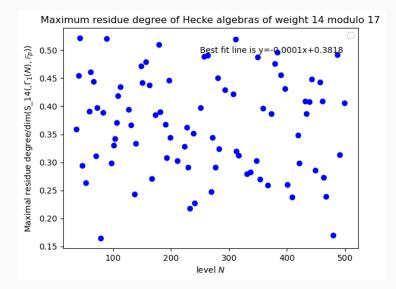


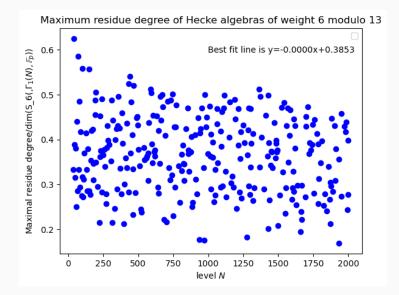


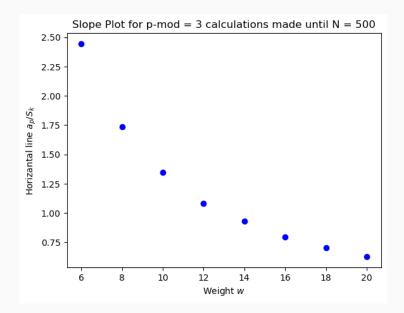


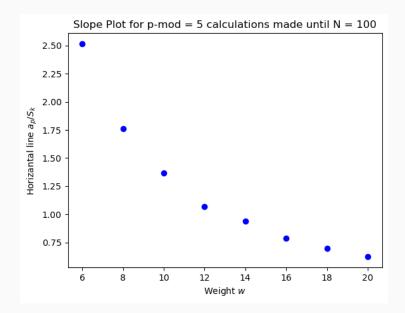


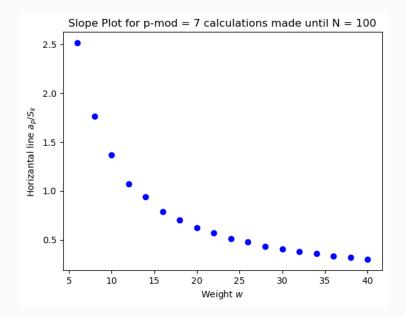


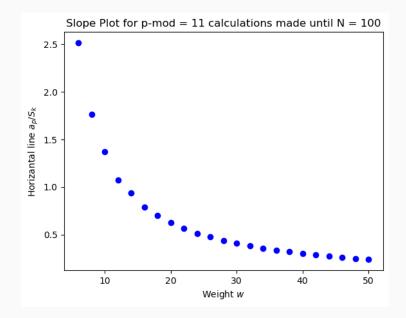


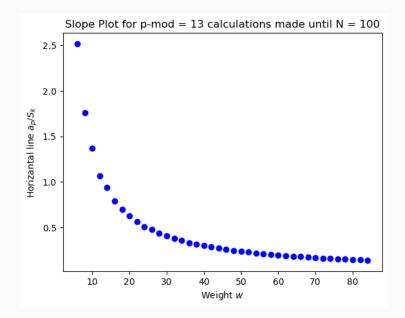


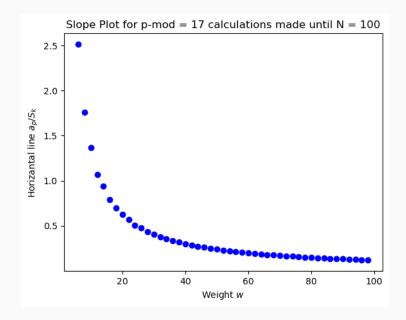


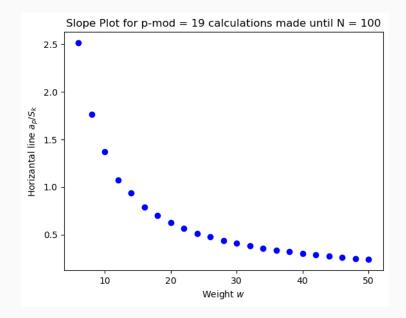












Back to the Heuristic

Question: Is the maximal residue degree, a_p , of primes above p in \mathbb{Q}_f related to b_n , the average maximum length of a cycle in a permutation of S_n ?

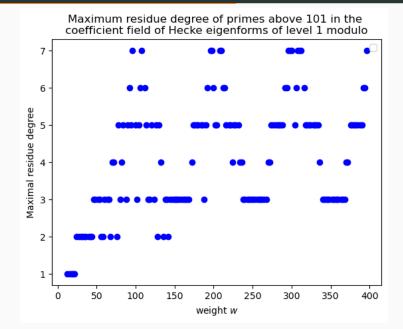
Question: Is the maximal residue degree, a_p , of primes above p in \mathbb{Q}_f related to b_n , the average maximum length of a cycle in a permutation of S_n ? **Answer**: Yes!

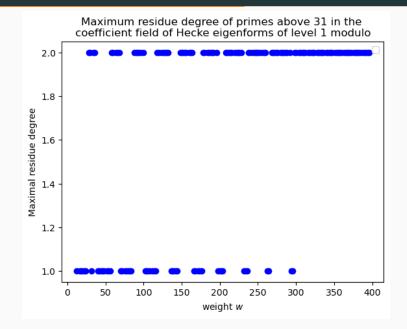
$$\lim_{N\to\infty}a_p(N)/dim(S_k(N;\mathbb{C})\approx h(p_{mod},w)\sim 13/w$$

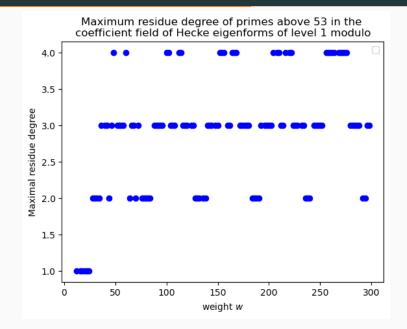
Question: Is the maximal residue degree, a_p , of primes above p in \mathbb{Q}_f related to b_n , the average maximum length of a cycle in a permutation of S_n ? **Answer**: Yes!

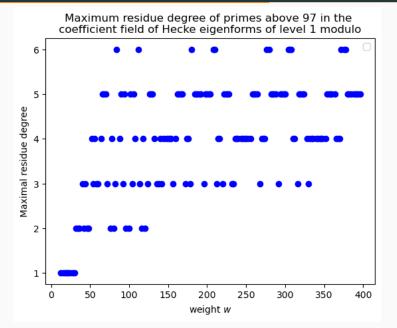
$$\lim_{N\to\infty}a_p(N)/dim(S_k(N;\mathbb{C})\approx h(p_{mod},w)\sim 13/w$$

Questions?



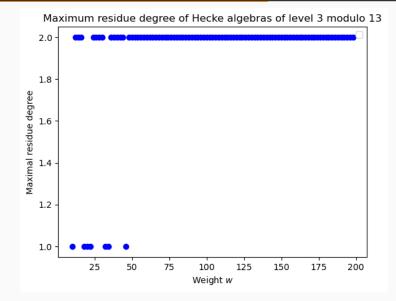


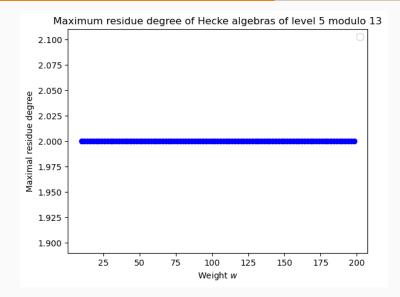




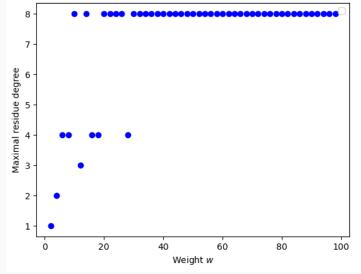
46

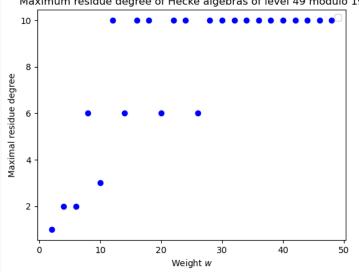
If we know all eigenforms of level 1 and weight $\leq p + 1$, then we essentially get all the eigenforms over \mathbb{F}_p in all weights by multiplying those of low weights by A_p , where $A_p = 1$ is a modular form of weight p - 1 and level 1 over \mathbb{F}_p .





Maximum residue degree of Hecke algebras of level 23 modulo 11





Maximum residue degree of Hecke algebras of level 49 modulo 19

